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1 Introduction

A solenoid is a cylindrical region of approximately uniform axial magnetic
flux density (Bz). In accelerator applications, solenoids are employed to con-
fine or to focus high-current electron beams. They are also used in plasma
ion sources. Large-volume solenoid fields are generated with current-carrying
coils (normal or superconducting). Permanent magnets have the advantages
that do not require a current supply and cooling. On the other hand, the
atomic current distributions of permanent magnets are not ideal for solenoid-
type fields and present definite limitations. In this tutorial, I will review
some features of solenoids using modern permanent-magnet materials (such
as neodymium iron and samarium cobalt). I will also discuss several field
solutions with PerMag that illustrate the range of field magnitude and uni-
formity in practical solenoids. The final section describes a method for de-
signing permanent-magnbet magnetic mirror fields with a specified mirror
ratio. The complete set of PerMag input files for this tutorial is available
on request (techinfo@fieldp.com).

A conventional solenoid consists of an azimuthal winding of current-
carrying wires on a cylindrical mandrel, as shown in Fig. 1a1 (PerMag

example PMSOLE01). Current in the shaded coil region flows out of the page.
The term solenoid comes from the Greek word for pipe because the coil acts
as a conduit for magnetic flux. The magnitude of the flux density is approxi-
mately uniform inside the coil. The flux returns through the surrounding air
volume. The addition of an iron flux-return structure (Fig. 1b) improves the
performance of a conventional solenoid (example PMSOLE02). The iron local-
izes the field and reduces reluctance of the magnetic circuit. As a result, the
internal flux is more uniform and the magnitude Bz(0, 0) is close to the value
for an infinite-length solenoid. For a giving field magnitude, the solenoid of
Fig. 1b requires only 80% of the power for a bare coil.

The basic physical properties of ferromagnetic materials are described
in Chap. 5 of the text S. Humphries, Principles of Charged Particle

Acceleration (Wiley-Interscience, New York, 1986). The book is freely
available for download at:

http://www.fieldp.com/cpa.html

The magnetic domains in modern permanent-magnet materials are aligned
and rigidly locked. Atomic currents flow in a direction normal to the axis of
magnetization. The summation of atomic currents gives zero current inside
the material and a current layer on the material surface. An infinite-length

1All illustrations in this report are z-r plots, not sections in the x or y planes. Only

positive values of r are defined
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Figure 1: Calculated lines of magnetic flux density B produced by a solenoid
coil with radius R = 5.25 cm, length L = 20.0 cm and line current Js =
9.018 × 104 A/m. a) Bare coil, Bz(0, 0) = 0.1000 tesla. b) iron shield,
Bz(0, 0) = 0.1112 tesla.

bar of permanent-magnet material has a line current density Js A/m. The
flux density outside the bar approaches zero, and the internal value is

Br = µ0Js. (1)

The quantity Br is called the remanence flux density. The values of Br for
neodymium-iron magnets is in the range 1.0 → 1.4 tesla.

If we limit attention to cylindrically-symmetric systems, permanent mag-
nets for solenoid fields must be magnetized in either the axial (z) or radial
(r) direction. In charged-particle applications, the region near the axis must
be free of materials. Therefore, the permanent magnet must have the shape
of an annulus. Figure 2 shows lines of B for an annular magnet with axial
magnetization. The summation of atomic currents gives uniform line current
densities pointing in the +θ direction on the inside and −θ direction on the
outside, with magnitude given by Eq. 1. In contrast to the solenoid coil
of Fig. 1a, the dual current layers work against each other. There are two
implications:

• The internal flux approaches zero as the axial length of the magnet
increases.

• Flux utilization from a finite-length magnet is relatively inefficient.
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Figure 2: Lines of B generated by a finite-length, annular permanent magnet
with axial magnetization.

2 Solenoid field – axial magnetization

We shall start by investigating the type of solenoid field generated by annular
permanent magnets with axial magnetization of the type shown in Fig. 2.
In the demonstration calculations, we shall take Br = 1.0 tesla. A signifi-
cant theoretical advantage of a modern permanent magnet is that its state
is almost unaffected by other magnets and applied fields. There are two
implications:

• The total flux density of an array of magnets is the linear superposition
of individual values of B.

• The total external magnetic flux density is linearly proportional to Br.

To simplify the calculations, the cross-sections of magnets are rectangular.
Chamfers and fillets introduce only small relative differences.

The geometry of Fig. 2 has two independent parameters: Ro/Ri and
L/Ri., where Ri is the inner radius of the annulus, Ro is the outer radius and
L is the axial length. The choice Ri = 5.0 cm was used in all calculations.
Field values apply to other systems if all dimensions are scaled by the same
factor.
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Table 1: Annular magnet with axial magnetization – variation with length
(Br = 1.0 tesla, Ri = 5.0 cm, Ro = 10.0 cm).

L (cm) Bz(0, 0) (tesla) Uin/Utot V (cm3)

10.0 -0.260 12.1% 2356
15.0 -0.234 10.0% 3534
20.0 -0.191 8.4% 4712
30.0 -0.122 6.5% 7068

The calculation of Fig. 2 (example PMSOLE03) was performed with Ro =
2Ri = 10.0 cm and L = 4Ri = 20.0 cm. To simulate a free space bound-
ary, a large solution volume was used for the PerMag calculation with
coarse element resolution outside the magnet region. The internal field was
Bz(0, 0) = −0.1942 tesla. It is interesting to verify that we can arrive at the
same field values by replacing the permanent magnet with uniform current
layers. In the example PMSOLE04, there is a positive current layer of length
20 cm between r = 4.75 and 5.25 cm and a negative layer between 9.75 cm
and 10.25 cm. The drive currents are

I = ±
BrL

µ0

= ±1.5916 × 105 A. (2)

The implication for theoretical work is that a modern permanent magnets
can be replaced by thin layers where the direction of the current is normal to
the magnetization axis the linear current density is given by Eq. 1. Another
important point is that an iron shield cannot be used to carry external return
1b. We can shown with PerMag that an iron shell around the outer radius
provides a low reluctance path that carries almost all the flux produced by
the magnet, reducing the internal field close to zero.

In the first production run (PMSOLE05), the length L was varied with fixed
Ro/Ri = 2.0. To compare field energy utilization, the air volume was divided
into two regions: the interior of the solenoid and the remaining volume.
Table 1 summarizes the results. Field cancellation between the inner and
outer current layers increases with the magnet length. In consequence, the
midplane field Bz(0, 0) as well as the energy utilization ratio decreases with
higher L. In the table, the quantity Uin is the electrostatic field energy in the
cylindrical bore of the magnet and Utot is the total field energy in air. Figure 3
shows plots of Bz(z, 0). For the axially-uniform magnet with Ro/Ri = 2.0,
the best length for field uniformity is L/Ri

∼= 4.0. For this choice, the length
of the uniform field region is about 2.0Ri (or L/2.0) with field magnitude
|Bz(0, 0)|/Br = 0.191.
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Figure 3: Variation of Bz(z, 0) with magnet length L (Br = 1.0 tesla, Ri = 5.0
cm, Ro = 10.0 cm).

In the second run (PMSOLE06), the outer radius Ro was varied with fixed
length L = 4.0Ri. The results are listed in Table 2. Higher fields can
be achieved at the expense of a larger magnet volume and reduced energy
utilization. In the limit Ro → ∞, the outer current layer is removed to
infinity and the calculation becomes identical to that of Fig. 1a. From the
result we can conclude that the limiting value of Bz(0, 0) for an infinite radius
magnet with L/Ri = 4.0 is 0.885Br.

Table 2: Annular magnet with axial magnetization – variation with outer
radius (Br = 1.0 tesla, Ri = 5.0 cm, L = 20.0 cm).

Ro (cm) Bz(0, 0) (tesla) Uin/Utot V (cm3)

10.0 -0.190 8.5% 4712
15.0 -0.347 6.6% 12566
20.0 -0.461 5.5% 23561
25.0 -0.545 4.7% 37699
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Figure 4: Lines of B for an annular permanent magnet with radial magneti-
zation (Ri = 5.0 cm, Ro = 10.0 cm, L = 5.0 cm).

3 Magnetic mirror – radial magnetization

A magnetic mirror is a solenoid field that increases axially away from a mid-
plane before dropping off at large distance. The field variation for L = 30.0
cm in Fig. 3 is an example of a mirror-type field. An important parameter
for plasma confinement is the mirror ratio,

M =
Bmax

Bmin

, (3)

where Bmin = Bz(0, 0) and Bmax is highest field value. The calculations of
the previous section demonstrate that large values of M cannot be achieved
with with axial magnetization. As an alternative, we shall consider assem-
blies of annular magnets with radial magnetization. To begin, it is useful to
understand the fields from a single magnet – Fig. 4 shows the geometry and
definitions of quantities.

Figure 5 shows the field variation Bz(z, 0) for a single radial magnet,
with the origin of the z axis at the magnet center (PMSOLE07). A magnetic
mirror field can be created with two magnets with inward and outward radial
magnetization separated by an axial distance. The mirror ratio depends
on the choice of separation distance. For guidance in the choice, we shall
characterize the field variations of a single radial magnet with different choices
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Figure 5: Variation Bz(z, 0) for for an annular permanent magnet with radial
magnetization (Ri = 5.0 cm, Ro = 10.0 cm, L = 7.5 cm).

Table 3: Annular magnet with radial magnetization – variation with length
(Br = 1.0 tesla, Ri = 5.0 cm, Ro = 10.0 cm).

L (cm) Bpeak (tesla) zpeak zhalf − zpeak

2.5 0.0996 3.50 4.70
5.0 0.1820 3.90 4.85
7.5 0.2403 4.70 4.90
10.0 0.2779 5.60 5.00

of Ro/Ri and L/Ri. Table 3 shows results where L/Ri varies and Ro/Ri has
the fixed value 2.0. The value of Bpeak rises simply because there is more
available flux with a larger magnet cross-section. With the given aspect
ratio, the peak flux density is about one-third Br. The axial extent of the
field region has little dependence on L. Table 4 shows results with a variation
of Ro/Ri at fixed L/Ri (PMSOLE08). There is a modest increase of peak field
at the expense of a much larger magnet volume. As expected, the axial
extent of the field increases with the average magnet radius.

Two separated magnets with oppositely-directed radial magnetization
create a region of axial flux density (Fig. 6). With modern magnetic ma-
terials, the total field in the absence of iron is the superposition of fields from
the individual magnets. The calculations listed in Tables 3 and 4 give the
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Table 4: Annular magnet with radial magnetization – variation with outer
radius (Br = 1.0 tesla, Ri = 5.0 cm, L = 5.0 cm).

Ro (cm) Bpeak (tesla) zpeak zhalf − zpeak

10.0 0.1820 3.90 4.85
12.5 0.2186 4.20 5.30
15.0 0.2416 4.38 6.30
17.5 0.2570 4.50 6.30
20.0 0.2676 5.00 6.30

Figure 6: Magnetic mirror created with two axially-separated annular mag-
nets with oppositely-directed radial magnetization. The iron pipe reduces
the circuit reluctance.
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Table 5: Annular magnet with radial magnetization – variation with outer
radius (Br = 1.0 tesla, Ri = 5.0 cm, L = 5.0 cm).

z (cm) ζ (cm) Bz (tesla) f(ζ)

4.80 0.0 0.2942 1.000
12.50 D/2.0 0.09897 0.336
20.20 D 0.0260 0.088

variation of magnetic field as a function of distance from the peak field point,

Bz(ζ, 0) = Bpeakf(ζ). (4)

Let D be the distance between the two positions of maximum flux density.
Combining two magnets, the maximum flux density is Bmax = Bpeakf(1+D)
and the minimum is Bmin = 2Bpeakf(D/2). The mirror ratio is

M =
1 + f(D)

2 f(D/2)
. (5)

An inspection of the results of Table 3 show that M > 1 when D exceeds
about 10 cm.

A test calculation (PMSOLE09) employed magnets with dimensions Ri =
5.0 cm, Ro = 10.0 cm and L = 7.50 cm. A scan of Bz(z, 0) shows that
Bz = 0.2942 tesla at z = 4.80 cm. An assembly with two magnets with an
axial separation of 25.0 cm corresponds to D = 25.0− 2.0× 4.8 = 15.40 cm.
The field scan gives the values listed in Table 5. Substitution in Eq. 5 gives
M = 1.62. A field calculation with the region outside the magnets in Fig. 6
set to µr = 1.0 gives the variation Bz(z, 0) shown as a black line in Fig. 7.
In general, the peak |B| in a practical assembly will be in the range ≤ Br/2.
To achieve higher fields than those in Fig. 7, we could use a material with
larger Br or increase Ro/Ri orL/Ri. In either case, there will be a penalty
in terms of the cost and difficulty of handling the magnets. Finally, some
applications require an asymmetric magnetic mirror. In this case we could
use magnets with different values for Ro/Ri and/orL/Ri.

An iron shield is beneficial in the radial magnet configuration. Iron can
carry some of the external flux between magnets, reducing the reluctance
of the circuit. For the field configuration in Fig. 6, the outer shield had
the property µr = 1000.0. The resulting variation Bz(z, 0) is plotted as the
blue trace in Fig. 7. The effect of iron is to increase the on-axis field by
about 13%. A final issue is how to choose the thickness of the iron shield.
The material should not be saturated – the solution almost independent
of detailed material properties as long as µr ≫ 1.0 throughout. In the
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Figure 7: Field variation Bz(z, 0) for the assembly of Fig. 6. Black trace:
bare magnets. Blue trace: iron flux return.

calculation of Fig. 6, the maximum magnitude of magnetic flux density is
∼ 1.1 tesla. Typical magnet steels reach saturation at around 2-3 tesla, so
the shield thickness could be significantly reduced.
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