C++ Class member functions
A member function of a class is a function that has its definition or its prototype within the class definition like any other variable. It operates on any object of the class of which it is a member, and has access to all the members of a class for that object.
Let us take previously defined class to access the members of the class using a member function instead of directly accessing them:
class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
double getVolume(void);// Returns box volume
};
|
Member functions can be defined within the class definition or separately using scope resolution operator, ::. Defining a member function within the class definition declares the function inline, even if you do not use the inline specifier. So either you can define Volume() function as below:
class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
double getVolume(void)
{
return length * breadth * height;
}
};
|
If you like you can define same function outside the class using scope resolution operator, :: as follows:
double Box::getVolume(void)
{
return length * breadth * height;
}
|
Here only important point is that you would have to use class name just before :: operator. A member function will be called using an dot operator (.) on a object where it will manipulate data related to that object only as follows:
Box myBox; // Create an object
myBox.getVolume(); // Call member function for the object
|
Let us put above concepts to set and get the value of different class members in a class:
#include <iostream>
using namespace std;
class Box
{
public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box
// Member functions declaration
double getVolume(void);
void setLength( double len );
void setBreadth( double bre );
void setHeight( double hei );
};
// Member functions definitions
double Box::getVolume(void)
{
return length * breadth * height;
}
void Box::setLength( double len )
{
length = len;
}
void Box::setBreadth( double bre )
{
breadth = bre;
}
void Box::setHeight( double hei )
{
height = hei;
}
// Main function for the program
int main( )
{
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
double volume = 0.0; // Store the volume of a box here
// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);
// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);
// volume of box 1
volume = Box1.getVolume();
cout << "Volume of Box1 : " << volume <<endl;
// volume of box 2
volume = Box2.getVolume();
cout << "Volume of Box2 : " << volume <<endl;
return 0;
}
|
When the above code is compiled and executed, it produces following result:
Volume of Box1 : 210
Volume of Box2 : 1560
|
|