

Tutorials Point, Simply Easy Learning

1 | P a g e

UML Tutorial

Tutorialspoint.com

Apache Ant is a Java based build tool from Apache Software Foundation. Apache Ant's build files

are written in XML and take advantage of the open standard, portable and easy to understand

nature of XML. For more detail kindly check tutorialspoint.com/ant

Why do you need a build tool?

Before diving deep into the definition of Apache Ant, one must understand the need for a build
tool. Why do I need Ant, or more specifically, why do I need a build tool?

Do you spend your day doing the following manually?

 Compile code

 Package the binaries

 Deploy the binaries to the test server

 Test your changes

 Copy code from one location to another

If you have answered yes to any of the above, then it is time to automate the process and take
away that burden from you.

On average, a developer spends 3 hours (out of a 8 hour working day) doing mundane tasks
like build and deployment. Wouldn't you be delighted to get back the 3 hours?

Enter Apache Ant. Apache Ant is an operating system build and deployment tool that can be
executed from a command line.

Features of Apache Ant

 Ant is the most complete Java build and deployment tool available.

 Ant is platform neutral and can handle platform specific properties such as file
separators.

 Ant can be used to perform platform specific tasks such as modifying the modified time

of a file using 'touch' command.

 Ant scripts are written using plain XML. If you are already familiar with XML, you can

learn Ant pretty quickly.

 Ant is good at automating complicated repetitive tasks.

 Ant comes with a big list of predefined tasks.

 Ant provides an interface to develop custom tasks.

 Ant can be easily invoked from the command line and it can integrate with free and
commercial IDEs.

Installing Apache Ant

It is assumed that you have already downloaded and installed Java Development Kit (JDK) on
your computer. If not, please follow the instructions here.

Apache Ant is distributed under the Apache Software License, a fully-fledged open source
license certified by the open source initiative.

The latest Apache Ant version, including full-source code, class files and documentation can be
found at http://ant.apache.org.

http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/java/java_environment_setup.htm
http://ant.apache.org/

Tutorials Point, Simply Easy Learning

2 | P a g e

1. Ensure that the JAVA_HOME environment variable is set to the folder where your JDK is
installed.

2. Download the binaries from http://ant.apache.org
3. Unzip the zip file to a convenient location using Winzip, winRAR, 7-zip or similar tools,

say c:\ folder.
4. Create a new environment variable called ANT_HOME that points to the Ant

installation folder, in this case c:\apache-ant-1.8.2-bin folder.
5. Append the path to the Apache Ant batch file to the PATH environment variable. In our

case this would be the c:\apache-ant-1.8.2-bin\bin folder.

Ant - Build Files

Typically, Ant's build file, build.xml should live in the project's base directory. Although you are
free to use other file names or place the build file in some other location.

For this exercise, create a file called build.xml anywhere in your computer.

<?xml version="1.0"?>

 <project name="Hello World Project" default="info">

 <target name="info">

 <echo>Hello World - Welcome to Apache Ant!</echo>

 </target>

</project>

Please note that there should be no blank lines or whitespaces before the xml declaration. If you
do, this may cause an error message when running the ant build - The processing instruction
target matching "[xX][mM][lL]" is not allowed.

All buildfiles require the project element and at least one target element.

The XML element project has three attributes :

Attributes Description

name The Name of the project. (Optional)

default The default target for the build script. A project may contain any number of

targets. This attribute specifies which target should be considered as the

default. (Mandatory)

basedir The base directory (or) the root folder for the project. (Optional)

A target is a collection of tasks that you want to run as one unit. In our example, we have a
simple target to provide an informational message to the user.

Targets can have dependencies on other targets. For example, a deploy target may have a
dependency on the package target, and the package target may have a dependency on the
compile target and so forth. Dependencies are denoted using the depends attribute. For
example:

<target name="deploy" depends="pacakge">

</target>

http://ant.apache.org/

Tutorials Point, Simply Easy Learning

3 | P a g e

<target name="pacakge" depends="clean,compile">

</target>

<target name="clean" >

</target>

<target name="compile" >

</target>

The target element has the following attributes:

Attributes Description

name The name of the target (Required)

depends Comma separated list of all targets that this target depends on. (Optional)

description A short description of the target. (optional)

if Allows the execution of a target based on the trueness of a conditional

attribute. (optional)

unless Adds the target to the dependency list of the specified Extension Point. An

Extension Point is similar to a target, but it does not have any tasks.

(Optional)

Ant - Property Task

Ant build files are written in XML, which does not cater for declaring variables as you do in your
favourite programming language. However, as you may have imagined, it would be useful if Ant
allowed declaring variables such as project name, project source directory etc.

Ant uses the property element which allows you to specify properties. This allows the
properties to be changed from one build to another. or from one environment to another.

By default, Ant provides the following pre-defined properties that can be used in the build file

Properties Description

ant.file The full location of the build file.

ant.version The version of the Apache Ant installation.

basedir The basedir of the build, as specified in the basedir attribute of

the project element.

ant.java.version The version of the JDK that is used by Ant.

Tutorials Point, Simply Easy Learning

4 | P a g e

ant.project.name The name of the project, as specified in the name atrribute of the

project element

ant.project.default-target The default target of the current project

ant.project.invoked-targets Comma separated list of the targets that were invoked in the

current project

ant.core.lib The full location of the ant jar file

ant.home The home directory of Ant installation

ant.library.dir The home directory for Ant library files - typically ANT_HOME/lib

folder.

Ant also makes the system properties (Example: file.separator) available to the build file.

In addition to the above, the user can define additional properties using the property element.
An example is presented below which shows how to define a property called sitename:

<?xml version="1.0"?>

<project name="Hello World Project" default="info">

 <property name="sitename" value="www.tutorialspoint.com"/>

 <target name="info">

 <echo>Apache Ant version is ${ant.version} - You are

 at ${sitename} </echo>

 </target>

</project>

Running ant on the above build file should produce the following output:

C:\>ant

Buildfile: C:\build.xml

info:

 [echo] Apache Ant version is Apache Ant(TM) version 1.8.2

 compiled on December 20 2010 - You are at www.tutorialspoint.com

BUILD SUCCESSFUL

Total time: 0 seconds

C:\>

Ant - Property Files

Setting properties directly in the build file is okay if you are working with a handful of
properties. However, for a large project, it makes sense to store the properties in a separate
property file.

Storing the properties in a separate file allows you to reuse the same build file, with different
property settings for different execution environment. For example, build properties file can be
maintained separately for DEV, TEST and PROD environments.

Tutorials Point, Simply Easy Learning

5 | P a g e

Specifying properties in a separate file is useful when you do not know the values for a property
(in a particular environment) up front. This allows you to perform the build in other
environments where the property value is known.

There is no hard and fast rule, but typically the property file is named build.properties and is
placed along side the build.xml file. You could create multiple build properties file based on the
deployment environments - such as build.properties.dev and build.properties.test

The contents of the build property file are similar to the normal java property file. They contain
one property per line. Each property is represented by a name and a value pair. The name and
value pair are separated by an equals sign. It is highly recommended that the properties are
annotated with proper comments. Comments are listed using the has character.

The following shows a build.xml and an associated build.properties file

build.xml

<?xml version="1.0"?>

<project name="Hello World Project" default="info">

 <property file="build.properties"/>

 <target name="info">

 <echo>Apache Ant version is ${ant.version} - You are

 at ${sitename} </echo>

 </target>

</project>

build.properties

The Site Name

sitename=www.tutorialspoint.com

buildversion=3.3.2

Ant - Data Types

Ant provides a number of predefined data types. Do not confuse the data types that are

available in the programming language, but instead consider the data types as set of services
that are built into the product already

The following is a list of data types provided by Apache Ant

File Set

The Fileset data types represents a collection of files. The Fileset data type is usually used as a
filter to include and exclude files that match a particular pattern.

For example:

<fileset dir="${src}" casesensitive="yes">

 <include name="**/*.java"/>

 <exclude name="**/*Stub*"/>

</fileset>

The src attribute in the above example points to the source folder of the project.

Tutorials Point, Simply Easy Learning

6 | P a g e

In the above example, the fileset selects all java files in the source folder except those that
contain the word 'Stub' in them. The case sensitive filter is applied to the fileset which means
that a file with the name Samplestub.java will not be excluded from the fileset

Pattern Set

A pattern set is a pattern that allows to easily filter files or folders based on certain patterns.
Patterns can be created using the following meta characters.

1. ? - Matches one character only
2. * - Matches zero or many characters
3. ** - Matches zero or many directories recursively

The following example should give an idea of the usage of a pattern set.

<patternset id="java.files.without.stubs">

 <include name="src/**/*.java"/>

 <exclude name="src/**/*Stub*"/>

</fileset>

The patternset can then be reused with a fileset as follows:

<fileset dir="${src}" casesensitive="yes">

 <patternset refid="java.files.without.stubs"/>

 </fileset>

File List

The File list data type is similar to the file set except that the File List contains explicitly named
lists of files and do not support wild cards

Another major difference between the file list and the file set data type is that the file list data
type can be applied for files that may or may not exist yet.

Following is an example of the File list data type

<filelist id="config.files" dir="${webapp.src.folder}">

 <file name="applicationConfig.xml"/>

 <file name="faces-config.xml"/>

 <file name="web.xml"/>

 <file name="portlet.xml"/>

</filelist>

The webapp.src.folder attribute in the above example points to the web application's source
folder of the project.

Filter Set

Using a Filter Set data type with the copy task, you can replace certain text in all files that
match the pattern with a replacement value.

A common example is to append the version nunber to the release notes file, as shown in the
example below

Tutorials Point, Simply Easy Learning

7 | P a g e

<copy todir="${output.dir}">

 <fileset dir="${releasenotes.dir}" includes="**/*.txt"/>

 <filterset>

 <filter token="VERSION" value="${current.version}"/>

 </filterset>

</copy>

The output.dir attribute in the above example points to the output folder of the project.

The releasenotes.dir attribute in the above example points to the release notes folder of the
project.

The current.version attribute in the above example points to the current version folder of the
project.

The copy task, as the name suggests is used to copy files from one location to another.

Path

The path data type is commonly used to represent a classpath. Entries in the path are
separated using a semicolon or colon. However, these characters are replaced a the run time by
the running system's path separator character.

Most commonly, the classpath is set to the list of jar files and classes in the project, as shown in
the example below:

<path id="build.classpath.jar">

 <pathelement path="${env.J2EE_HOME}/${j2ee.jar}"/>

 <fileset dir="lib">

 <include name="**/*.jar"/>

 </fileset>

</path>

The env.J2EE_HOME attribute in the above example points to the environment variable
J2EE_HOME.

The j2ee.jar attribute in the above example points to the name of the J2EE jar file in the J2EE
base folder.

Ant - Building Projects

Now that we have learnt about the data types in Ant, it is time to put that into action. Consider
the following project structure

This project will form the Hello World project for the rest of this tutorial.

C:\work\FaxWebApplication>tree

Folder PATH listing

Volume serial number is 00740061 EC1C:ADB1

C:.

+---db

+---src

. +---faxapp

. +---dao

. +---entity

Tutorials Point, Simply Easy Learning

8 | P a g e

. +---util

. +---web

+---war

 +---images

 +---js

 +---META-INF

 +---styles

 +---WEB-INF

 +---classes

 +---jsp

 +---lib

Let me explain the project structure.

1. The database scripts are stored in the db folder.
2. The java source code is stored in the src folder.
3. The images, js, META-INF, styles (css) are stored in the war folder.

4. The JSPs are stored in the jsp folder.
5. The third party jar files are stored in the lib folder.
6. The java class files will be stored in the WEB-INF\classes folder.

The aim of this exercise is to build an ant file that compiles the java classes and places them in
the WEB-INF\classes folder.

Here is the build.xml required for this project. Let us consider it piece by piece

<?xml version="1.0"?>

<project name="fax" basedir="." default="build">

 <property name="src.dir" value="src"/>

 <property name="web.dir" value="war"/>

 <property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

 <property name="name" value="fax"/>

 <path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

 </path>

 <target name="build" description="Compile source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5" target="1.5">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

 </target>

 <target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 </delete>

 </target>

</project>

First, let us declare some properties for the source, web and build folders.

Tutorials Point, Simply Easy Learning

9 | P a g e

<property name="src.dir" value="src"/>

<property name="web.dir" value="war"/>

<property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

In this example, the src.dir refers to the source folder of the project (i.e, where the java source
files can be found).

The web.dir refers to the web source folder of the project. This is where you can find the JSPs,
web.xml, css, javascript and other web related files

Finally, the build.dir refers to the output folder of the project compilation.

Properties can refer to other properties. As shown in the above example, the build.dir property
makes a reference to the web.dir property.

In this example, the src.dir refers to the source folder of the project.

The default target of our project is the compile target. But first let us look at the clean target.

The clean target, as the name suggests deletes the files in the build folder.

<target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 </delete>

</target>

The master-classpath holds the classpath information. In this case, it includes the classes in the
build folder and the jar files in the lib folder.

<path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

</path>

Finally, the build target to build the files. First of all, we create the build directory if it doesn't

exist. Then we execute the javac command (specifying jdk1.5 as our target compilation). We
supply the source folder and the classpath to the javac task and ask it to drop the class files in
the build folder.

<target name="build" description="Compile main source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5" target="1.5" debug="true"

 deprecation="false" optimize="false" failonerror="true">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

</target>

Running ant on this file will compile the java source files and place the classes in the build
folder.

Tutorials Point, Simply Easy Learning

10 | P a g e

The following outcome is the result of running the ant file:

C:\>ant

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 6.3 seconds

The files are compiled and are placed in the build.dir folder.

Ant - Creating JAR files

The next logical step after compiling your java source files, is to build the java archive, i,e the

JAR file. Creating JAR files with Ant is quite easy with the jar task. Presented below are the
commonly used attributes of the jar task

Attributes Description

basedir The base directory for the output JAR file. By default, this is set to the base

directory of the project.

compress Advises ant to compress the file as it creates the JAR file.

keepcompression While the compress attribute is applicable to the individual files, the

keepcompression attribute does the same thing, but it applies to the

entire archive.

destfile The name of the output JAR file

duplicate Advises Ant on what to do when duplicate files are found. You could add,

preserve or fail the duplicate files.

excludes Advises Ant to not include these comma seperated list of files in the

package.

excludesfile Same as above, except the exclude files are specified using a pattern.

inlcudes Inverse of excludes

includesfile Inverse of excludesfile.

update Advises ant to overwrite files in the already built JAR file.

Continuing our Hello World project, let us add a new target to produce the jar files. But before
that let us consider the jar task:

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

Tutorials Point, Simply Easy Learning

11 | P a g e

 includes="faxapp/util/**"

 excludes="**/Test.class"

/>

In this example, the web.dir property points to the path of the web source files. In our case,
this is where the util.jar will be placed.

The build.dir property in this example points to the build folder where the class files for the
util.jar can be found.

In this example, we create a jar file called util.jar using the classes from the faxapp.util.*
package. However, we are excluding the classes that end with the name Test. The output jar file
will be place in the webapp's lib folder.

If we want to make the util.jar an executable jar file we need to add the manifest with the
Main-Class meta attribute.

Therefore the above example will be updated as:

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

 includes="faxapp/util/**"

 excludes="**/Test.class">

 <manifest>

 <attribute name="Main-Class"

value="com.tutorialspoint.util.FaxUtil"/>

 </manifest>

</jar>

To execute the jar task, wrap it inside a target (most commonly, the build or package target,
and run them.

<target name="build-jar">

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

 includes="faxapp/util/**"

 excludes="**/Test.class">

 <manifest>

 <attribute name="Main-Class"

value="com.tutorialspoint.util.FaxUtil"/>

 </manifest>

</jar>

</target>

Running ant on this file will create the util.jar file for us..

The following outcome is the result of running the ant file:

C:\>ant build-jar

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 1.3 seconds

The util.jar file is now placed in the output folder.

Tutorials Point, Simply Easy Learning

12 | P a g e

Ant - Creating WAR files

Creating WAR files with Ant is extremely simple, and very similar to the creating JAR files task.
After all WAR file, like JAR file is just another ZIP file, isn't it?

The WAR task is an extension to the JAR task, but it has some nice additions to manipulate what
goes into the WEB-INF/classes folder, and generating the web.xml file. The WAR task is useful
to specify a particular layout of the WAR file.

Since the WAR task is an extension of the JAR task, all attributes of the JAR task apply to the
WAR task. Below are the extension attributes that are specify to the WAR task:

Attributes Description

webxml Path to the web.xml file

lib A grouping to specify what goes into the WEB-INF\lib folder.

classes A grouping to specify what goes into the WEB-INF\classes folder.

metainf Specifies the instructions for generating the MANIFEST.MF file.

Continuing our Hello World Fax Application project, let us add a new target to produce the jar
files. But before that let us consider the war task. Consider the following example:

<war destfile="fax.war" webxml="${web.dir}/web.xml">

 <fileset dir="${web.dir}/WebContent">

 <include name="**/*.*"/>

 </fileset>

 <lib dir="thirdpartyjars">

 <exclude name="portlet.jar"/>

 </lib>

 <classes dir="${build.dir}/web"/>

</war>

As per the previous examples, the web.dir variable refers to the source web folder, i.e, the
folder that contains the JSP, css,javascript files etc.

The build.dir variable refers to the output folder - This is where the classes for the WAR
package can be found. Typically, the classes will be bundled into the WEB-INF/classes folder of
the WAR file.

In this example, we are creating a war file called fax.war. The WEB.XML file is obtained from the
web source folder. All files from the 'WebContent' folder under web are copied into the WAR file.

The WEB-INF/lib folder is populated with the jar files from the thirdpartyjars folder. However,
we are exlcuding the portlet.jar as this is already present in the application server's lib folder.
Finally, we are copying all classes from the build directory's web folder and putting into the
WEB-INF/classes folder.

Wrap the war task inside an Ant target (usually package) and run it. This will create the WAR
file in the specified location.

Tutorials Point, Simply Easy Learning

13 | P a g e

It is entirely possible to nest the classes, lib, metainf and webinf directors so that they live in
scattered folders anywhere in the project structure. But best practices suggest that your Web

project should have the Web Content structure that is similar to the structure of the WAR file.
The Fax Application project has its structure outlined using this basic principle.

To execute the war task, wrap it inside a target (most commonly, the build or package target,
and run them.

<target name="build-war">

 <war destfile="fax.war" webxml="${web.dir}/web.xml">

 <fileset dir="${web.dir}/WebContent">

 <include name="**/*.*"/>

 </fileset>

 <lib dir="thirdpartyjars">

 <exclude name="portlet.jar"/>

 </lib>

 <classes dir="${build.dir}/web"/>

</war>

</target>

Running ant on this file will create the fax.war file for us..

The following outcome is the result of running the ant file:

C:\>ant build-war

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 12.3 seconds

The fax.war file is now placed in the output folder. The contents of the war file will be:

fax.war:

 +---jsp This folder contains the jsp files

 +---css This folder contains the stylesheet files

 +---js This folder contains the javascript files

 +---images This folder contains the image files

 +---META-INF This folder contains the Manifest.Mf

 +---WEB-INF

 +---classes This folder contains the compiled classes

 +---lib Third party libraries and the utility jar files

 WEB.xml Configuration file that defines the WAR package

Ant - Executing Java code

You can use Ant to execute java code. In this example below, the java class takes in an
argument (administrator's email address) and sends out an email.

public class NotifyAdministrator

{

 public static void main(String[] args)

 {

 String email = args[0];

 notifyAdministratorviaEmail(email);

 System.out.println("Administrator "+email+" has been notified");

 }

Tutorials Point, Simply Easy Learning

14 | P a g e

 public static void notifyAdministratorviaEmail(String email)

 {

 //......

 }

}

Here is a simple build that executes this java class.

<?xml version="1.0"?>

<project name="sample" basedir="." default="notify">

 <target name="notify">

 <java fork="true" failonerror="yes" classname="NotifyAdministrator">

 <arg line="admin@test.com"/>

 </java>

 </target>

</project>

When the build is executed, it produces the following outcome:

C:\>ant

Buildfile: C:\build.xml

notify:

 [java] Administrator admin@test.com has been notified

BUILD SUCCESSFUL

Total time: 1 second

In this example, the java code does a simple thing - to send an email. We could have used the
built in Ant task to do that. However, now that you have got the idea you can extend your build
file to call java code that performs complicated things, for example: encrypts your source code.

Further Detail:

Refer to the link http://www.tutorialspoint.com/ant

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn SQL

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

 Learn RADIUS

http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm
http://www.tutorialspoint.com/radius/index.htm

Tutorials Point, Simply Easy Learning

15 | P a g e

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

