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Figure 1: Model of a coaxial transmission line in the low-frequency limit,
showing dimensions and regions. 1) Outer conductor. 2) Air. 3) Inner
conductor. 4) Flux-con�ning boundary.

This tutorial illustrates how to use �nite-element codes to calculate in-
ductance. The calculations address transmission lines in the limit that the
radiation wavelength is long compared to the transverse dimensions of the
structure. I will show how to set up solutions with the two-dimensional Per-
Mag code (for static magnetic �elds) to get useful information for both the
low and high-frequency limits.

We begin with a simple example that can be compared to theory, the
coaxial transmission line shown in Fig. 1. Current 
ows out of thepage
through the center conductor. A return current 
ows into the page through
the outer conductor. With the assumption that there are no ground loops,
the drive and return currents are equal in magnitude; therefore, there is no
magnetic �eld outside the assembly. The center conductor has radius r i ,
while the outer conductor has inner radiusro and outer radiusrw .

In the low frequency limit, the current is uniformly distributed over the
area of the inner and outer conductors to minimize the circuit resistance.
In this case, it is easy to set up aPerMag solution. The three volumetric
regions (inner conductor, air, outer conductor) have the material property
� r = 1:0. The inner conductor carries total currentI 0 = 1:0 A and the outer
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Figure 2: Coaxial transmission line in the low-frequency limit, plot of jB j for
a drive current I 0 = 1:0 A.

conductor has current -1.0 A.PerMag automatically apportions current
to elements of a conducting regions to represent a uniform current density.
Figure 1 shows the geometry withr i = 2:0 cm, ro = 4:5 cm and rw = 5:0
cm. Region 1 is the outer conductor, Region 2 is air and Region3 is the
inner conductor. It is necessary to specify a condition on the outer boundary
(Region 4). We set the vector potentialAz equal to zero, equivalent to the
condition that 
ux is contained inside (i.e., B is parallel to the surface). The
element size approximately 0.1 cm. The plot ofjB j in Fig. 2 shows that the
magnetic 
ux density permeates the conductors. The predictedmagnetic

ux density on the surface of the inner conductor is

B � =
� 0I 0

2�r i
= 10� 5 (tesla): (1)

We can �nd the inductance per unit length in z (L z) by calculating the
magnetic �eld energy per length (Uz) and employing the relationship:

Uz =
L zI 2

0

2
(2)

PerMag has an automatic routine to integrate the magnetic �eld energy
density
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u =
B 2

2� r � 0
(3)

over the cross-section of the line. The resulting value,Uz = 1:09718� 10� 7

J/m, implies that L z = 2:1943� 10� 7 H/m. The calculation shows that
22.8% of the energy is in the center conductor, 73.9% in the air space and
3.3% in the outer conductor.

The more familiar example is the high-frequency case where the magnetic
�eld is excluded from the metal center and outer conductors. In this case,
the inductance per length given by

L z =
� r � 0

2�
ln(ro=ri ): (4)

The value for an air-�lled transmission line with r i = 2:0 cm andro = 4:5 cm
is 1:6219� 10� 7. This quantity is 73.9% of the low-frequency value because
there no �eld energy in the conductors. In aPerMag calculation, a perfect
conductor is a surface of constant vector potential. In this case, lines of
magnetic 
ux density run parallel to the surface. I modi�ed the solution of
Fig. 1. Region 1 extends fromr i to ro with � r = 1:0, Region 2 is the outer
boundary at ro with Az = 0:0 tesla-m and Region 3 in the inner conductor of
radius r i with a �xed value Az = Az0. I made the arbitrary choiceAz0 = 1:0
tesla-m. The speci�cations lead to a solution with the desired properties:
the magnetic 
ux density satis�es Eq. 1 in the air space and equalszero
everywhere else.

In order to determine inductance, it is necessary to �nd the current 
ow-
ing in the center conductor corresponding to choice ofAz0. For this we can
utilize Ampere's law,

I  
1
� 0

!

B � dl = I 0: (5)

The circuit integral is applied along a closed path in the air space surrounding
the center conductor to �nd the total current I 0. To speed up this type
of calculation, I created a con�guration �le permaginductance.cfg using
permagstandard.cfg as a template. It contains the de�nitions:

VOLUME
Energy = &Bxz &Hxz * &Byr &Hyr * + 0.5 *

END
SURFACE

IEnclosed = &Bxz $IMu0 *;&Byr $IMu0 *
END

The volume integral gives the total �eld energy per length, while the surface
integral implements Eq. 5. I also prepared an analysis script with the content:
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CONFIGURATION \fieldp\tricomp\permag_inductance.cfg
OUTPUT Inductance02.DAT
INPUT Inductance02.POU
VOLUMEINT
LINEINT -2.5 -2.5 2.5 -2.5
LINEINT 2.5 -2.5 2.5 2.5
LINEINT 2.5 2.5 -2.5 2.5
LINEINT -2.5 2.5 -2.5 -2.5
ENDFILE

Under control of the script,PerMag sets the proper con�guration �le, loads
the second solution �le and opens a �leInductance02.DAT to record the re-
sults. The program performs the volume integral and takes fourline integrals
that constitute a closed path around the center conductor. The�eld energy
is 3:0822� 106 J/m while the sum of current from the parallel component
of the line integrals is 6:1656� 106 A. Applying Eq. 2, the inductance is
L z = 1:6263� 10� 7 H/m, within 0.2% of the predicted value.

An important questions is when to apply the low or high frequency in-
ductance values. Suppose the center and outer conductors in Fig. 1 have
resistivity � . The resistance per unit length of the structure is

Rz = �

 
1

�r 2
i

+
1

� (r 2
w � r 2

o)

!

: (6)

If the conductors in Fig. 1 are aluminum (� = 2:65� 10� 8 
-m), then Rz =
3:89� 10� 5 
/m. The transition from low to high frequency operations occurs
near the frequency

f 0 =
1

2� (L z=Rz)
= 38 Hz: (7)

Magnetic 
ux is excluded from the conductors and Eq. 4 holds for frequencies
in the rangef � f 0.

Of course, a numerical approach is not necessary with a geometryas
simple as that of Fig. 1. Numerical methods o�er a real advantage if the
center conductor is non-circular. In this case, an analytic solution would
involve derivation and evaluation of a series expansion, which usually involves
considerably more work than a direct numerical approach. Another practical
application would be calculation of the inductance with a displaced center
conductor. For example, we may want to �nd the e�ect of sag in a long, air
insulated line.

The second example is the two-wire transmission line shown in Fig.3.
Two conductors of radiusa = 0:15 cm separated by distanceD = 1:0cm
carry equal and opposite currents. If the wires are located in in�nite free
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Figure 3: Lines of magnetic 
ux density, two-wire transmission line in a
bounded space.

space, the analytic value for inductance per length in the high-frequency
limit is

L z =
� 0

�
cosh� 1

� D
2a

�

= 7:497� 10� 7 (H=m): (8)

One problem that we face in a numeric calculations is that �nite-element
solutions are performed in a �nite space. The issue illustrates a general rule:
it is often di�cult to replicate an ideal analytic result with a numeric code.
On the other hand, it is relatively easy to generate practicalresults. No real-
world system is in�nite, and our concern is frequently the perturbing e�ect
of surrounding structures.

The �rst solution I created to approximate the in�nite-space results had
the geometry of Fig. 3. The solution area is a square box with 6.0cm sides.
The mesh is de�ned with �ne elements near the wires and coarse elements
in the surrounding volume. Region 1 is air, Region 2 is the left-hand wire
with the condition Az = � 1:0 tesla-m and Region 3 is the right-hand wire
with the condition Az = � 1:0 tesla-m. We must specify a condition on the
boundary (Region 4). There are two choices in a standard �nite-element
solution: 1) Dirichlet condition where Az = Az0 and lines ofB are parallel
and 2) Neumann condition where@Az=@n = 0:0 and lines ofB are normal
to the surface. The second choice is clearly non-physical. The better choice
is to set Az equal to constant value. In this case, con�nement of 
ux inside
the box will introduce a shift in L z from the in�nite-space value.
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Figure 4: Magnetic �eld lines of a two-wire transmission line above a metal
plate.

I used the same analysis techniques as those in the previous example. A
area integral is used to �nd the magnetic �eld energy per length, while the
current carried by the right-hand wire is determined from a circuit integral
(Eq. 5). The energy isUz = 2:7236� 106 J/m and the current is I 0 =
2:7325� 106 A. The corresponding inductance isL z = 7:2954� 10� 7 H/m,
about 3% lower than the free-space value. To check the e�ect ofthe boundary,
I created a second solution with an expanded volume (sides of length 12.0
cm). Here, the calculated inductance isL z = 7:477� 10� 7 H/m, a di�erence
of only 0.3% from the theoretical value.

A practical application demonstrates the advantage of the numerical ap-
proach. Suppose we want to �nd how the inductance per length ofthe line
changes if it passes near a metal object. For example, what happens if we
run a television antenna cable across a metal roof? Consider placing the
transmission line of Fig. 3 1.0 cm above a metal plate. To construct solution,
we simple move the lower 
ux-excluding boundary fromy = � 6:0 cm to
y = � 1:0 cm. Figure 4 shows the resulting distribution of lines of magnetic

ux density. The plate compresses lines in the lower part of the volume. Us-
ing calculated values of the �eld energy and wire current, the inductance per
unit length is L z = 7:0546� 10� 7 H/m, a reduction of 6% from the free-space
value.
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