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Figure 1. Model of a coaxial transmission line in the low-frequey limit,
showing dimensions and regions. 1) Outer conductor. 2) Air. 3) ter
conductor. 4) Flux-con ning boundary.

This tutorial illustrates how to use nite-element codes to ckulate in-
ductance. The calculations address transmission lines in thenit that the
radiation wavelength is long compared to the transverse dimsions of the
structure. | will show how to set up solutions with the two-dimensinal Per-
Mag code (for static magnetic elds) to get useful information for lath the
low and high-frequency limits.

We begin with a simple example that can be compared to theoryheé
coaxial transmission line shown in Fig. 1. Current ows out of thepage
through the center conductor. A return current ows into the page through
the outer conductor. With the assumption that there are no grond loops,
the drive and return currents are equal in magnitude; therefe, there is no
magnetic eld outside the assembly. The center conductor has das r;,
while the outer conductor has inner radius, and outer radiusr,,.

In the low frequency limit, the current is uniformly distributed over the
area of the inner and outer conductors to minimize the circtiresistance.
In this case, it is easy to set up &erMag solution. The three volumetric
regions (inner conductor, air, outer conductor) have the ntarial property

= 1:0. The inner conductor carries total currentlo = 1:0 A and the outer
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Figure 2: Coaxial transmission line in the low-frequency limjtplot of jBj for
a drive currentlg =1:0 A.

conductor has current -1.0 A.PerMag automatically apportions current
to elements of a conducting regions to represent a uniform cant density.

Figure 1 shows the geometry withr; = 2:0 cm, r, = 4:5 cm andr,, = 5:0

cm. Region 1 is the outer conductor, Region 2 is air and Regidghis the

inner conductor. It is necessary to specify a condition on the tar boundary

(Region 4). We set the vector potentialA, equal to zero, equivalent to the
condition that ux is contained inside (i.e., B is parallel to the surface). The
element size approximately 0.1 cm. The plot gBj in Fig. 2 shows that the
magnetic ux density permeates the conductors. The predictedhagnetic
ux density on the surface of the inner conductor is

B =-2%=10 5 (tesla): (1)
2r i
We can nd the inductance per unit length inz (L) by calculating the
magnetic eld energy per length UJ,) and employing the relationship:

L2
2
: @

PerMag has an automatic routine to integrate the magnetic eld enayy
density
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over the cross-section of the line. The resulting valué), = 1:09718 10 ’
J/m, implies that L, = 2:1943 10 ’ H/m. The calculation shows that
22.8% of the energy is in the center conductor, 73.9% in ther apace and
3.3% in the outer conductor.
The more familiar example is the high-frequency case wherestimnagnetic
eld is excluded from the metal center and outer conductors. nl this case,
the inductance per length given by

u=

— r o —r\-
L= 5= In(ro=n): (4)

The value for an air- lled transmission line withr; = 2:0 cm andr, = 4:5 cm
is 1:6219 10 ’. This quantity is 73.9% of the low-frequency value because
there no eld energy in the conductors. In aPerMag calculation, a perfect
conductor is a surface of constant vector potential. In this &, lines of
magnetic ux density run parallel to the surface. | modi ed the solution of
Fig. 1. Region 1 extends front; to r, with , = 1:0, Region 2 is the outer
boundary atr, with A, = 0:0 tesla-m and Region 3 in the inner conductor of
radius r; with a xed value A, = A,q. | made the arbitrary choiceA,, =1:0
tesla-m. The speci cations lead to a solution with the desired perties:
the magnetic ux density satises Eq. 1 in the air space and equalgero
everywhere else.

In order to determine inductance, it is necessary to nd the cuent ow-
ing in the center conductor corresponding to choice &,,. For this we can
utilize Ampere's law,
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The circuit integral is applied along a closed path in the air sgce surrounding
the center conductor to nd the total current 1. To speed up this type
of calculation, | created a con guration le permaginductance.cfg using
permagstandard.cfg as a template. It contains the de nitions:

B dl = Iy (5)

VOLUME

Energy = &Bxz &Hxz * &Byr &Hyr * + 0.5 *
END
SURFACE

IEnclosed = &Bxz $IMu0 *;&Byr $IMu0 *
END

The volume integral gives the total eld energy per length, \uile the surface
integral implements Eq. 5. | also prepared an analysis script thithe content:
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CONFIGURATION \fieldp\tricomp\permag_inductance.cfg
OUTPUT Inductance02.DAT

INPUT Inductance02.POU

VOLUMEINT

LINEINT -25 -25 25 -25

LINEINT 25 -25 25 25

LINEINT 25 25 -25 25

LINEINT -25 25 -25 -25

ENDFILE

Under control of the script, PerMag sets the proper con guration le, loads
the second solution le and opens a ldnductance02.DAT to record the re-
sults. The program performs the volume integral and takes foline integrals
that constitute a closed path around the center conductor. Theald energy
is 30822 10° J/m while the sum of current from the parallel component
of the line integrals is 61656 1P A. Applying Eq. 2, the inductance is
L, =1:6263 10 7 H/m, within 0.2% of the predicted value.

An important questions is when to apply the low or high frequencin-
ductance values. Suppose the center and outer conductors ingFil have
resistivity . The resistance per unit length of the structure is
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If the conductors in Fig. 1 are aluminum ( =2:65 10 & -m), then R, =
3:89 10 ° /m. The transition from low to high frequency operations occurs
near the frequency

: 1

2 (L=Ry)
Magnetic ux is excluded from the conductors and Eg. 4 holdf frequencies
in the rangef  fy.

Of course, a numerical approach is not necessary with a geomeasy
simple as that of Fig. 1. Numerical methods o er a real advantagif the
center conductor is non-circular. In this case, an analytic &dion would
involve derivation and evaluation of a series expansion, whicsually involves
considerably more work than a direct numerical approach. Anber practical
application would be calculation of the inductance with a diplaced center
conductor. For example, we may want to nd the e ect of sag in adng, air
insulated line.

The second example is the two-wire transmission line shown in Fig.
Two conductors of radiusa = 0:15 cm separated by distanc® = 1:0cm
carry equal and opposite currents. If the wires are located im hite free

fo = 38 Hz: (7)
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Figure 3: Lines of magnetic ux density, two-wire transmissionihe in a
bounded space.

space, the analytic value for inductance per length in the higfrequency
limit is

L,= -2 cosh? ;l =7:497 10 7 (H=m): (8)

One problem that we face in a numeric calculations is that rie-element
solutions are performed in a nite space. The issue illustrates ageral rule:
it is often di cult to replicate an ideal analytic result with a numeric code.
On the other hand, it is relatively easy to generate practicalesults. No real-
world system is in nite, and our concern is frequently the peudrbing e ect

of surrounding structures.

The rst solution | created to approximate the in nite-space results had
the geometry of Fig. 3. The solution area is a square box with 6dn sides.
The mesh is de ned with ne elements near the wires and coarseeatents
in the surrounding volume. Region 1 is air, Region 2 is the leftand wire
with the condition A, = 1.0 tesla-m and Region 3 is the right-hand wire
with the condition A, = 1.0 tesla-m. We must specify a condition on the
boundary (Region 4). There are two choices in a standard nitelement
solution: 1) Dirichlet condition where A, = A,y and lines ofB are parallel
and 2) Neumann condition where@ A=@ = 0:0 and lines ofB are normal
to the surface. The second choice is clearly non-physical. Thetter choice
is to set A, equal to constant value. In this case, con nement of ux inside
the box will introduce a shift in L, from the in nite-space value.
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Figure 4: Magnetic eld lines of a two-wire transmission line afive a metal
plate.

| used the same analysis techniques as those in the previous exEmp
area integral is used to nd the magnetic eld energy per lengt, while the
current carried by the right-hand wire is determined from a iccuit integral
(Eq. 5). The energy isU, = 2:7236 1 J/m and the current is Iy =
2:7325 1C° A. The corresponding inductance i4., = 7:2954 10 7 H/m,
about 3% lower than the free-space value. To check the e ectibfe boundary,
| created a second solution with an expanded volume (sides of dgim 12.0
cm). Here, the calculated inductance i&, = 7:477 10 ' H/m, a di erence
of only 0.3% from the theoretical value.

A practical application demonstrates the advantage of the maerical ap-
proach. Suppose we want to nd how the inductance per length dhe line
changes if it passes near a metal object. For example, what hams if we
run a television antenna cable across a metal roof? Consider @lgg the
transmission line of Fig. 3 1.0 cm above a metal plate. To constriusolution,
we simple move the lower ux-excluding boundary frony = 6:0 cm to
y = 1.0 cm. Figure 4 shows the resulting distribution of lines of magtie
ux density. The plate compresses lines in the lower part of theolume. Us-
ing calculated values of the eld energy and wire current, t inductance per
unit length is L, = 7:0546 10 7 H/m, a reduction of 6% from the free-space
value.



