@ devart

Choosing the Right Way of
Migrating MySQL Databases

Devart White Paper
June, 2010

Table of Contents

1ol o T L6 ot oo Y 3
Common Cases and Challenges of Migrating Databases..........ccoooviiiiiiiiiii i 3
Moving to @ New MySQL Server VerSiON. ..o i siee s sae s sneraneennes 3
Moving to Another Server Machine. ... e 4
Moving a Local MySQL Database to a Remote Hosting Provider Server.................... 4
Creating a Copy of a Live Database and Its Further Support.........cccviiiiiiiiiiiiiiennns 4
Standard Ways to Migrate Databases.....cccviiiiiiiii i 5
Meeting Challenges with Devart Schema and Data Compare TOOIS......ccvvviiiiiiiiiiiineinnnns 6
(670 T 111 o o PP 18
F Yo Lo 1 L Al B 1= 7Y o o P 20
© 2010 Devart 2

Introduction

Every day on web development or server-related forums someone asks a question about how to
move databases across different servers or server versions. The answers are not straight and
simple, but rather diverse and dependent on each particular case. While working with databases,
almost every database developer or DBA faces the task to migrate database structure and data. It
is very common in database development life cycle, but still remains challenging. This white paper
examines the use cases of database migration and challenges that accompany it. The main
attention is devoted to solutions used to remove the complexity and bottlenecks of database
migration. The white paper introduces Devart’s Schema and Data Compare tools tailored to

facilitate any database migration tasks and reduce time and effort.

Common Cases and Challenges of Migrating Databases

The reasons why one would want to move MySQL databases are different. Here are several most
frequent ones:

« Moving to a new MySQL Server version

* Moving to another server machine (changing a web hosting provider or replacing server

equipment)
* Moving a local MySQL database to a remote hosting provider server

* Creating a copy of a live database and its further support (required for testing new

technologies and a new architecture)

Moving to a New MySQL Server Version

This task can be considered in two aspects: moving to a newer server version (upgrading) or
some prior version (downgrading). In the first case, the problems may happen as a new server
version does not support prior structures or handles them differently. In the second case, the
trouble worsens as the prior version may lack not only new structures, but the whole object types
(for example, MySQL 4.0 does not support procedures, neither MySQL 5.1.9. supports
partitioning) and data types. As a result, simple statements execution may fail or a MySQL server
may execute them in an unexpected way. Either outcome is unfavorable. Suppose, your database
consists of few objects and you can fix queries to execute them on a new server, but what if you
are moving data, and some data types mismatch? It is usually followed by hours and hours of

manual and intensive values converting.

© 2010 Devart 3

Moving to Another Server Machine

This commonly happens when changing a web hosting provider or replacing server environment.
In the simplest cases, it takes to backup a database and restore it on a new server machine.
However, as it happens in the life, what is originally planned as a backup/restore turns into a
disaster. The usual situations during changing a web hosting provider is that a new server is
configured in a different mode as the old server, has different default values for some parameters
(for example, by default it has InnoDB engine for tables instead of MyISAM one) or lacks the
necessary functionality (for example, partitioning support is turned off). To illustrate the case,
suppose a backup file was created without a table engine specified, then the default engine will be
used while creating the tables, meanwhile all the settings of the prior table engine will be lost.
And, much manual edition follows, for example, you will have to remove foreign keys indications
from each table description. (Hanpumep, ykazaHune BHEWHNX KAKOYen NnpnaeTcs yaansiTb U3
Kaxporo onncanms tTabnuubl.) Another tough time can come due to encoding differences. You may
try to upload data with utf-8 charset to the server with some other default charset, as the result,

data will be damaged and its restoring will become heavy toil.

Moving a Local MySQL Database to a Remote Hosting Provider Server

Every web developer has to move fresh changes, tested and verified on the local database, to a
remote database. The problems mentioned in case of moving to another server machine is
applicable to this task. Besides, additional problems relate to metadata and data changes, such
as:

* Adding new objects, deleting old ones. It refers both to top level objects (tables, views,

procedures) and sub-objects (columns, indexes, etc)
+ Changing texts of views, procedures, triggers or events

+ Changing table structures (for example, adding partitions)

Adding, deleting or changing records in tables (taking into an account metadata changes)

Often, you need to move all the changes from one database to another. One of possible solutions
is to fully drop an existing target database, generate a script that contains the structure and the
data of the source database and execute it. However, in most cases, it is prohibited to drop the

existing database that plays an important role and delivers valuable information.

Creating a Copy of a Live Database and Its Further Support

The need to use copies of a live database is an integral part of developing and testing any
database. You can run tests, change the structure, add data, check and change again until your

database is ready for moving to the remote server. Until this moment, the server is not affected.

© 2010 Devart 4

The bottleneck is that you want to accurately move the ready changes, but save the testing stuff
like specific data for functional, regression or load testing.

All the aforementioned challenges become even tougher when databases, you need to move, have
complex structures and relations, great number of objects and records in the tables. The
unfortunate truth is database migration becomes not only an error-prone time-consuming routine,
but leaves you with almost no efficient way to complete the task.

Standard Ways to Migrate Databases

There are several ways commonly used to move MySQL databases from one server to another.
They include:

1. Manual

Manual migrating is the most time-consuming and hard to use way. It perfectly suits migrating
small databases. The advantage of manual migration is that you can fully control the process.
Completing each step, you have time to evaluate the situation and decide how to handle this or
that change. However, the value of this way is diminished by such shortcomings as huge amount
of time and effort to spend and impossibility to synchronize databases of large sizes. As modern
databases gain more complex structure and larger amounts of data, manual migrating of
databases proves its disadvantage.

2. Semiautomatic

To partially automate database migrating, you can write scripts and use them to compare and
synchronize databases. This method is quite accessible to many database specialists and many
leverage it. You can retrieve metadata by using famous queries to information_schema or with
the help of SHOW command. Data synchronization can be done through INSERT..SELECT
statements. A most common example of semiautomatic database migration consists of three
steps: first is to prepare a synchronization script with all the metadata and data of the source
database, then dropping the target database and at last restoring it from the script. However,
there are considerable complications that follow the method:

+ In most cases, a special text comparison tool is required to compare metadata. A simple
review of two texts requires titanic efforts to find the differences and not to miss a thing or
two. Imagine comparing results of executed SHOW CREATE TABLE statement or any other
common clauses barehanded. On the other hand, tools themselves require additional time
and insight to use them efficiently. Usage of several tools to complete migration may bring
some inconveniences.

» Data comparison is not a snap, and such tasks as replacing or updating parts of data

practically cannot be done with the help of synchronization scripts.

« Unless you are lucky to have scripts written for all the cases, each particular database

© 2010 Devart 5

migrating requires a new synchronization script. Even if you update the same database on
a regular basis, you may need different scripts due to the type of changes made in the

database.
3. Automatic

There are many specific tools designed to replace manual comparison and synchronization of
databases. Their capabilities, performance and efficiency are diverse. They usually compare
source and target databases and display the results in the graphical interface convenient for
analysis. You can easily exclude database objects from synchronization and apply multiple options
to tune the process.

Among solid benefits such as canceling manual work, eliminating errors due to a human factor,
reducing time and providing a correct result, the disadvantages are a high product price, a lack of

required functionality, and much time and effort to use the tools efficiently.

Meeting Challenges with Devart Schema and Data

Compare Tools

Devart Schema and Data Compare tools are tailored to not only facilitate comparison and
synchronization of database but also make each case of database migration a simple and
predicted thing. Let us see how Devart tools can facilitate database migrating tasks in web site
developing.

Suppose, during developing an internet shop (small_shop) for some client, you should update the
first version of the small_shop web site with the new functionality and data. The first thing you
should do before developing the second version of the web site is making a local copy of a staging
database. You need to fully backup the database to a sql file. dbForge Studio for MySQL offers a
quick and convenient way of doing backup files with Database Backup Wizard (see Figure 1) and

then helps to restore databases via Database Restore Wizard.

© 2010 Devart 6

“ ™

General
Choose general backup options.

Load a previously saved backup projed:

B Mo project loaded

General

Backup content

Connection: Database:
Options
B |sma||_shop.remotehost |v| |sma||_shop |v|
Errars handling Path:

Progress b:\

Cutput file name:

Finish
small_shop

20100614 1017.zip

[¥] Append timestamp to the file name

[Auto delete old files Use compression (ZIF)

Level:
Files older than days ’Ma)cimum v]
Quantity more than Comment:

|First revision of small_shop | - |

Help] [Save Project] < Back [Mext > J’ Backup]’ Cancel]

Figure 1: Database Backup Wizard

The first version of the small_shop web site contains the following:
* customers - customers data

* navigation - a table describing the menu located in the left block on the web site
+ pages - data about web site pages and their content
+ products - products the e-shop sells

+ orders — orders made by customers.

The changes in the second version include:

* The news table was added to store the e-shop news.

* The navigation_types table was added to provide the navigation using not only the left
menu, but the top one and the breadcrumbs. The table contains the type id column and

the navigation table has a foreign key referring to the navigation_types table

* Foreign keys referring to customers and products tables were added to the orders table.
* A new address field appeared in the customers table.

* The customers_products view appeared to provide the list of customers and the products

© 2010 Devart 7

they bought. Besides, the get_best_customer was added to let us choose the best

customer in the e-shop.

* Some changes were made in the data of navigation, news and pages tables, the latter got

news and news_detail pages.

Now the task is to synchronize the structure and data changes in local and remote databases.
While the second version of the web site was under development, the initial web site copy got new
data: the list of products were extended, new clients as well as new orders were added. The
bottleneck here is how to save the new data in the remote database and update it with the latest
changes from the staging database. Simple restoring from the backup script with dropping the

target database is no help in this case.

Before comparing data, the identical database structures are required. Schema Comparison
Wizard (Figure 2), provided in dbForge Studio for MySQL, can synchronize database structures of
any complexity in double-quick time. It takes only to select source and target databases for
comparison and click the Compare button to get comparison with default settings. In our case the
selected source and target are small_shop.localhost (the local copy of the database) and
small_shop.remotehost (the database on the remote server). The comparison results appear in

the neat grid (Figure 3).

© 2010 Devart 8

ﬂ.,

| Source and Target

i Select Source and Target connections and specify the names of databases to be compared.
I

H

Source Target

Source and Target B =i Connection:

|sma||_5ho|:|.|omlhost |5ma||_sho|:|.remotehost

Options

[Edit...][Mew. .. [Edit...][MNew. ..

Database: Database:

|srna||_sho|:| |srna||_sho|:|

Figure 2: Schema Comparison Wizard with selected Source and Target

© 2010 Devart

#% small_shop (loca...s db-3309).scomp* |E¥] Start Page -4 b x
=1 small_shop.lecalhost, small_shop Filter: | = v| 9 of 9 objects displayed small_shop.rematehost, small_shop =1
Type Source Objects Operation Target Objects
= [oOnlyin Source (4 of 4)
= Table navigation_types =¥ Create
= Table NeEws = Create
View customers_products =¥ Create
Procedure get_best_customer = Create
E = Different (3 of 3)
= Table customers = Update | customers
= Table navigation = Update | navigation
= Table orders = Update |orders
= = Equal (0 of 2)
5 Tab ag @ M. |= [iE%
|
= Table products m products
| * Drop I
A AFE 3 ® pages] = [E pages ¥
= CREATE TABLE pages | CEELATE TAEBLE pages | -
id INT(11) NOT NULL, id INT(11) NOT NWULL,
name VARCHRE (Z255) DEFAULT NULL, name VARCHAR (255) DEFAULT MNULL,
content TEXT DEFAULT HNULL, content TEXT DEFAULT NULL,
FRIMLRY EEY (id) PFRIMOLRY EEY (id)
))
ENGINE = INNCODE ENGINE = INNCDE
CHBELCTER SET latinl CHORMRCTER S5ET latinl
COLLATE latinl swedish ci COLLATE latinl swedish ci
4 3] b

Figure 3: Comparison results of database schemas

The comparison results show four new objects, three different objects, which differences can be
thoroughly reviewed in the text editors under the grid, and two objects with identical metadata.
For partial synchronization, it is easy to exclude unnecessary objects by unselecting check boxes
next to them. You can select required synchronization operation for each pair of objects by using
the Operation column. For example, to drop an unnecessary object from the target database, you
can select the Drop operation.

When you analyzed the results and made necessary operations based on your needs, it is time to

press the Synchronize button and set up the synchronization in Schema Synchronization Wizard
(Figure 4).

© 2010 Devart 10

[
— i

| Output
Select output options to manage the synchronization script.

() Open the synchronization script in the internal editor
(71 Save the script to a file
siUser\DocumentsidbForge Studio for MySQL\SchemaSynchronization.sql Browse...
Open in the internal editor

(@ Execute the script directly against the target database
Refresh comparison results after successful synchronization

< Back Mext = IS?ndjrunize] ’ Cancel

Figure 4: Schema Synchronization Wizard

It provides several types of synchronization. You can open the generated synchronization script in
the script editor, save the script as a file for further review and execution, or just execute the
script immediately after it is generated. Let us select the immediate synchronization and click
Synchronize. Upon the synchronization, the schemas are re-compared and we can see the

identical schemas (Figure 5).

© 2010 Devart 11

Synchronize...

48 small_shop (loca..s db-3300).scomp® |[] Start Page - d b x
=1 small_shop.localhost.small_shop Filter: * w| 9of 9objects displayed small_shop.remotehost.small_shop =4
Type Source Objects Operation Target Objects
=l = Equal (0of9)
=] Table customers @@ MNone |customers
ab avigatio o avigatio
= Table navigation_types @ MNone |navigation_types
= Table news & MNone |[news
= Table orders & MNone |orders
= Table pages & MNone |pages
= Table products @ None |products
View customers_products @ MNone |customers_products
Procedure get_best_customer & MNone |get_best_customer
A A=E L T navigation (3 = [navigation ¥
= CREATE TAELE navigation CREATE TABLE navigation -
id INT(11) NOT NULL, id INT(11) NOT NULL,
page_id INT(11) DEFAULT NULL, page_1id INT(11l) DEFAULT NULL,
parent page id INT(11) DEFAULT NULL, parent page_id INT(11) DEFAULT NULL,
type_id INT(11) NOT NULL, type_id INT(11l) NOT NULL,
PRIMBEY KEY (id), PRIMLEY KEY (id),
INDEX FE navigation navigation types id INDEX FE _navigation navigation types id
CONSTRAINT F¥ navigation navigation type CONSTRAINT F¥ navigation navigation typ
REFERENCES navigation_ types(id) REFERENCES navigation_ types(id)
))
ENGINE = INNOCDB ENGINE = INHNODB
CHARBCTER SET latinl CHRARBCTER SET latinl
COLLATE latinl swedish ci COLLATE latinl swedish ci
< m | 3 4| [T] >

Figure 5: Schemas re-comparing after synchronization

Now it is time for convenient data synchronization with Data Comparison Wizard (Figure 6). It

offers three groups of various settings to help you tune the following:

» Automatic mapping of objects — you can select whether to take into account case, spaces

or ignore some properties.

+ Comparing objects - you can define what objects to be compared and what should be

ignored.

+ Displaying comparison results — these options definitely simplify your work while analyzing

the differences and show only that information you need.

© 2010 Devart 12

[i
Mew Data Comparisol _'.E.L

Source and Target
Select Source and Target connections and specify the names of databases to be compared.

Source Target

Source and Target ETCsEnE Connection:

|srna||_sh0|:|.lomlhost |srna||_sh0|:|.remohehost

Options

[Edt.][mew. [Edt.][new.

Mapping

Database: Database:
|5rna||_shop |srna||_shop

[copv =] [5] [e= con]

< Back ’ MNext >][Compare]’ Cancel

Figure 6: Data Comparison Wizard
As we do not want to see identical records in our case, let us just exclude them from displaying.

Besides automatic mapping of objects, the wizard lets you do some manual mapping. It is very
essential for cases when automatic mapping does not suit your needs, for example, you want to
map schemas with different names. The Mapping wizard page (Figure 7) gives you freedom to set
comparison keys by selecting existing or custom ones; select columns for comparison, apply SQL
filter for each object, exclude unnecessary objects from comparison, and map those objects that
were not automatically mapped.

© 2010 Devart 13

Mew Data Comparison

Mapping
Select objects that you want to compare. If necessary, spedfy key columns and the list of columns for
comparison.

| Reset | X SOL Filter...

Source and Target / Comparison Key Columns in Comparison

Options B cwstomers PRIMARY ﬂ 4 of 4 columns
= navigation 4of 4 columns
[navigation_types 2of 2 columns

[news 3of 3 columns

Mapping

Horders 4of 4 columns

2l pages 3of 3 columns
[products 4 of 4 columns

Filter: 7 of 7 objects displayed
e [o) (e ()

Figure 7: Mapping in Data Comparison Wizard

When the comparison is set up, we press the Compare button and get the data comparison results
in the convenient grid (Figure 8).

© 2010 Devart 14

i (@ | Group by | T - | =] | #] Synchronize... B

3;’ small_shop (loca...s db-3309).dcomp™ B start Page < X
small_shop.localhost.small_shop &+ = =41 small_shop.remotehost.small_shop
Object Only in Source Different Records [C] only in Target
=] customers 1] 3 (Update 2) 1]
=1 navigation] 4 1]
=l navigation_types 3 8] a]
= news 2 i} 1]
[| &l orders 1] i} [2 (pelete 0)
=] pages 2 [u] a
[T | = products 1] 0 [1 (Delete o)
Filter: | = v| 7 of 7 objects displayed ¥
Cnly in Source (0) | Different Records (3) | Only in Target (0)
id | &+ name =41l name | & email =k 1| email | %+ address
» 1| |Mick Sodan Nick Sodan nick@amail. com nick@gmail.com New York, USA, 5 Avenue st., 132,
2| |John Petrowski | John Petrowski jpetrov @int-some.com | jpetrov@int-some.com Krakov, Poland, Zhdanovskiy Ivan st., 14
= 3| TestUserl |Alexey Zhirov| | tstuser@email.com |zhirov@yandex.ru Test
4] 4| Record 1of 3 [][m] « [m - r

Figure 8: Data comparison results

The results include:

New data (Only in Source) that exists only in the local copy of the database.

Data existing in the remote database (Only In Target). It can be new data or some data
deleted in the local database. To preserve the new data on the remote server, we can

exclude it from the synchronization.

Modified data in customers and navigation tables. As it is shown, the changes in record
with id 3 record contradict each other. The record in the remote database contains real
data of a new customer, meanwhile in the local database the record has some working data
used for testing new functionality. To keep the real data, we exclude the record with test
data from synchronization, but all the rest records will be synchronized as a new address

column has been added.

When the comparison results are ready for synchronization, we open Data Synchronization Wizard

(Figure 9) by selecting the Synchronize button on the toolbar.

© 2010 Devart 15

|

Output |
Select output options to manage the synchronization script,

small_shop ’ﬁ small_shop
on localhost on remotehost

(7 Open the synchronization script in the internal editor

Options

Summary

() save the script to a file

sers\UseriDocuments\dbForge Studio for MySQL\DataSynchronization.sgl | Browse, ..

Open in the internal editor

(@ Execute the script directly against the target database
Refresh comparison results after successful synchronization

= Back I MNext =] [Synchronize] l Cancel l

Figure 9: Data Synchronization Wizard

With the wizard, you have a choice of what to do with the synchronization script (whether to see it
now, save for further review or execute immediately), apply synchronization options, e.g., to turn
off foreign keys, and see the execution plan along with the list of warnings and notifications if any

are generated. You have the complete control and insight what the result you will get.

To synchronize the data, it takes only to press Synchronize in the wizard and check the re-
compared data (Figure 10) to ensure we have the desired result. We have all the selected records
successfully synchronized. The records selected to preserve in the remote database are preserved.

The result is the same as expected, with little effort, time and errors.

© 2010 Devart 16

®
:
tE
b
&
g
g‘ _.
L] 2 :
g

- J [X
small_shop.localhost.small_shop & = =41 small_shop.remotehost. small_shop
Object Fl Only in Source Different Records Only in Target
] customers [u] o 0
=1 navigation i} 1] a
=1 navigation_types 0 a a
=l news o i} 0
=l orders 0 0 2
=l pages [s} 1] 1]
= products 0 i} 1
Filter: | = v| 7 of 7 objects displayed ¥
Only in Source (0)] Different Records (1) I Only in Target (0)]
id | name =1l name |+ email =1l email | %+ address =kl address
| 3 | 3 T-Etl.lserl.|ﬂmn:’v2lim1r| Ishlser@enli.mmlzlimv@valdm:.ru| Test |r.|"'.u£’ |
(W)[€] Record 1011 (3] .

Figure 10: Data re-comparing after synchronization

Imagine the benefits you may get while dealing with more complex database structures, larger

data and specific requirements of your database migrating cases.

© 2010 Devart

Conclusion

In the fast-developing world of databases, database migrating is a business necessity. As
databases grow in size and gain more complex structures, migrating failures become costly and
put the companies’ prosperity at a big risk. Without reliable and speedy tools, it is hard to meet
new business challenges, be efficient and safe. The modern market offers enough tools, varying in

functionality, efficiency and price.

As each company faces the choice, the rational way to find the perfect tool is to define what
database migration tasks the tool should complete, what kind of databases and data will be
involved, and what critical functionality the company wants to see. This will harrow the selection

and indicate the very tool that will suit the specific needs.

© 2010 Devart 18

Additional Resources

Articles on forward engineering with MySQL Workbench:

http://dev.mysqal.com/doc/workbench/en/wb-forward-engineering.html

Schema and Data Compare Tools by Devart

http://www.devart.com/dbforge/mysqgl/schemacompare

http://www.devart.com/dbforge/mysaql/datacompare

Automated MySQL Data Comparison and Synchronization: How It Works:

http://www.devart.com/blogs/dbforge/?p=541

Data Comparison Methods Overview
http://www.devart.com/blogs/dbforge/?p=1056

Guide to Schema Synchronization with MySQL Workbench:

http://wb.mysqgl.com/?p=116

© 2010 Devart

19

http://www.devart.com/dbforge/mysql/datacompare/
http://www.devart.com/dbforge/mysql/schemacompare/
http://wb.mysql.com/?p=116
http://www.devart.com/blogs/dbforge/?p=1056
http://www.devart.com/blogs/dbforge/?p=541
http://dev.mysql.com/doc/workbench/en/wb-forward-engineering.html

About Devart

Devart (formerly known as Core Lab) is a
@ d eVO rt software development company founded in 1998.
It is a provider of native connectivity solutions,
development and administration tools for Oracle,
SQL Server, MySQL, PostgreSQL, InterBase,
Firebird, and SQLite databases. It is a partner of such software providers as Microsoft and

CodeGear and participates in MySQL Network Program. Devart is dedicated to delivering the

fastest available data access and the broadest database support to industry professionals.

Company Web Site: www.devart.com

© 2010 Devart 20

http://www.devart.com/

