
Choosing the Right Way of

Migrating MySQL Databases

Devart White Paper
June, 2010

Table of Contents
Introduction...3

Common Cases and Challenges of Migrating Databases..3

Moving to a New MySQL Server Version..3

Moving to Another Server Machine...4

Moving a Local MySQL Database to a Remote Hosting Provider Server....................4

Creating a Copy of a Live Database and Its Further Support..................................4

Standard Ways to Migrate Databases...5

Meeting Challenges with Devart Schema and Data Compare Tools...............................6

Conclusion..18

About Devart..20

© 2010 Devart 2

Introduction

Every day on web development or server-related forums someone asks a question about how to

move databases across different servers or server versions. The answers are not straight and

simple, but rather diverse and dependent on each particular case. While working with databases,

almost every database developer or DBA faces the task to migrate database structure and data. It

is very common in database development life cycle, but still remains challenging. This white paper

examines the use cases of database migration and challenges that accompany it. The main

attention is devoted to solutions used to remove the complexity and bottlenecks of database

migration. The white paper introduces Devart’s Schema and Data Compare tools tailored to

facilitate any database migration tasks and reduce time and effort.

Common Cases and Challenges of Migrating Databases

The reasons why one would want to move MySQL databases are different. Here are several most

frequent ones:

• Moving to a new MySQL Server version

• Moving to another server machine (changing a web hosting provider or replacing server

equipment)

• Moving a local MySQL database to a remote hosting provider server

• Creating a copy of a live database and its further support (required for testing new

technologies and a new architecture)

Moving to a New MySQL Server Version

This task can be considered in two aspects: moving to a newer server version (upgrading) or

some prior version (downgrading). In the first case, the problems may happen as a new server

version does not support prior structures or handles them differently. In the second case, the

trouble worsens as the prior version may lack not only new structures, but the whole object types

(for example, MySQL 4.0 does not support procedures, neither MySQL 5.1.9. supports

partitioning) and data types. As a result, simple statements execution may fail or a MySQL server

may execute them in an unexpected way. Either outcome is unfavorable. Suppose, your database

consists of few objects and you can fix queries to execute them on a new server, but what if you

are moving data, and some data types mismatch? It is usually followed by hours and hours of

manual and intensive values converting.

© 2010 Devart 3

Moving to Another Server Machine

This commonly happens when changing a web hosting provider or replacing server environment.

In the simplest cases, it takes to backup a database and restore it on a new server machine.

However, as it happens in the life, what is originally planned as a backup/restore turns into a

disaster. The usual situations during changing a web hosting provider is that a new server is

configured in a different mode as the old server, has different default values for some parameters

(for example, by default it has InnoDB engine for tables instead of MyISAM one) or lacks the

necessary functionality (for example, partitioning support is turned off). To illustrate the case,

suppose a backup file was created without a table engine specified, then the default engine will be

used while creating the tables, meanwhile all the settings of the prior table engine will be lost.

And, much manual edition follows, for example, you will have to remove foreign keys indications

from each table description. (Например, указание внешних ключей придется удалять из

каждого описания таблицы.) Another tough time can come due to encoding differences. You may

try to upload data with utf-8 charset to the server with some other default charset, as the result,

data will be damaged and its restoring will become heavy toil.

Moving a Local MySQL Database to a Remote Hosting Provider Server

Every web developer has to move fresh changes, tested and verified on the local database, to a

remote database. The problems mentioned in case of moving to another server machine is

applicable to this task. Besides, additional problems relate to metadata and data changes, such

as:

• Adding new objects, deleting old ones. It refers both to top level objects (tables, views,

procedures) and sub-objects (columns, indexes, etc)

• Changing texts of views, procedures, triggers or events

• Changing table structures (for example, adding partitions)

• Adding, deleting or changing records in tables (taking into an account metadata changes)

Often, you need to move all the changes from one database to another. One of possible solutions

is to fully drop an existing target database, generate a script that contains the structure and the

data of the source database and execute it. However, in most cases, it is prohibited to drop the

existing database that plays an important role and delivers valuable information.

Creating a Copy of a Live Database and Its Further Support

The need to use copies of a live database is an integral part of developing and testing any

database. You can run tests, change the structure, add data, check and change again until your

database is ready for moving to the remote server. Until this moment, the server is not affected.

© 2010 Devart 4

The bottleneck is that you want to accurately move the ready changes, but save the testing stuff

like specific data for functional, regression or load testing.

All the aforementioned challenges become even tougher when databases, you need to move, have

complex structures and relations, great number of objects and records in the tables. The

unfortunate truth is database migration becomes not only an error-prone time-consuming routine,

but leaves you with almost no efficient way to complete the task.

Standard Ways to Migrate Databases

There are several ways commonly used to move MySQL databases from one server to another.

They include:

1. Manual

Manual migrating is the most time-consuming and hard to use way. It perfectly suits migrating

small databases. The advantage of manual migration is that you can fully control the process.

Completing each step, you have time to evaluate the situation and decide how to handle this or

that change. However, the value of this way is diminished by such shortcomings as huge amount

of time and effort to spend and impossibility to synchronize databases of large sizes. As modern

databases gain more complex structure and larger amounts of data, manual migrating of

databases proves its disadvantage.

2. Semiautomatic

To partially automate database migrating, you can write scripts and use them to compare and

synchronize databases. This method is quite accessible to many database specialists and many

leverage it. You can retrieve metadata by using famous queries to information_schema or with

the help of SHOW command. Data synchronization can be done through INSERT..SELECT

statements. A most common example of semiautomatic database migration consists of three

steps: first is to prepare a synchronization script with all the metadata and data of the source

database, then dropping the target database and at last restoring it from the script. However,

there are considerable complications that follow the method:

• In most cases, a special text comparison tool is required to compare metadata. A simple

review of two texts requires titanic efforts to find the differences and not to miss a thing or

two. Imagine comparing results of executed SHOW CREATE TABLE statement or any other

common clauses barehanded. On the other hand, tools themselves require additional time

and insight to use them efficiently. Usage of several tools to complete migration may bring

some inconveniences.

• Data comparison is not a snap, and such tasks as replacing or updating parts of data

practically cannot be done with the help of synchronization scripts.

• Unless you are lucky to have scripts written for all the cases, each particular database

© 2010 Devart 5

migrating requires a new synchronization script. Even if you update the same database on

a regular basis, you may need different scripts due to the type of changes made in the

database.

3. Automatic

There are many specific tools designed to replace manual comparison and synchronization of

databases. Their capabilities, performance and efficiency are diverse. They usually compare

source and target databases and display the results in the graphical interface convenient for

analysis. You can easily exclude database objects from synchronization and apply multiple options

to tune the process.

Among solid benefits such as canceling manual work, eliminating errors due to a human factor,

reducing time and providing a correct result, the disadvantages are a high product price, a lack of

required functionality, and much time and effort to use the tools efficiently.

Meeting Challenges with Devart Schema and Data

Compare Tools

Devart Schema and Data Compare tools are tailored to not only facilitate comparison and

synchronization of database but also make each case of database migration a simple and

predicted thing. Let us see how Devart tools can facilitate database migrating tasks in web site

developing.

Suppose, during developing an internet shop (small_shop) for some client, you should update the

first version of the small_shop web site with the new functionality and data. The first thing you

should do before developing the second version of the web site is making a local copy of a staging

database. You need to fully backup the database to a sql file. dbForge Studio for MySQL offers a

quick and convenient way of doing backup files with Database Backup Wizard (see Figure 1) and

then helps to restore databases via Database Restore Wizard.

© 2010 Devart 6

Figure 1: Database Backup Wizard

The first version of the small_shop web site contains the following:

• customers – customers data

• navigation – a table describing the menu located in the left block on the web site

• pages – data about web site pages and their content

• products – products the e-shop sells

• orders – orders made by customers.

The changes in the second version include:

• The news table was added to store the e-shop news.

• The navigation_types table was added to provide the navigation using not only the left

menu, but the top one and the breadcrumbs. The table contains the type_id column and

the navigation table has a foreign key referring to the navigation_types table

• Foreign keys referring to customers and products tables were added to the orders table.

• A new address field appeared in the customers table.

• The customers_products view appeared to provide the list of customers and the products

© 2010 Devart 7

they bought. Besides, the get_best_customer was added to let us choose the best

customer in the e-shop.

• Some changes were made in the data of navigation, news and pages tables, the latter got

news and news_detail pages.

Now the task is to synchronize the structure and data changes in local and remote databases.

While the second version of the web site was under development, the initial web site copy got new

data: the list of products were extended, new clients as well as new orders were added. The

bottleneck here is how to save the new data in the remote database and update it with the latest

changes from the staging database. Simple restoring from the backup script with dropping the

target database is no help in this case.

Before comparing data, the identical database structures are required. Schema Comparison

Wizard (Figure 2), provided in dbForge Studio for MySQL, can synchronize database structures of

any complexity in double-quick time. It takes only to select source and target databases for

comparison and click the Compare button to get comparison with default settings. In our case the

selected source and target are small_shop.localhost (the local copy of the database) and

small_shop.remotehost (the database on the remote server). The comparison results appear in

the neat grid (Figure 3).

© 2010 Devart 8

Figure 2: Schema Comparison Wizard with selected Source and Target

© 2010 Devart 9

Figure 3: Comparison results of database schemas

The comparison results show four new objects, three different objects, which differences can be

thoroughly reviewed in the text editors under the grid, and two objects with identical metadata.

For partial synchronization, it is easy to exclude unnecessary objects by unselecting check boxes

next to them. You can select required synchronization operation for each pair of objects by using

the Operation column. For example, to drop an unnecessary object from the target database, you

can select the Drop operation.

When you analyzed the results and made necessary operations based on your needs, it is time to

press the Synchronize button and set up the synchronization in Schema Synchronization Wizard

(Figure 4).

© 2010 Devart 10

Figure 4: Schema Synchronization Wizard

It provides several types of synchronization. You can open the generated synchronization script in

the script editor, save the script as a file for further review and execution, or just execute the

script immediately after it is generated. Let us select the immediate synchronization and click

Synchronize. Upon the synchronization, the schemas are re-compared and we can see the

identical schemas (Figure 5).

© 2010 Devart 11

Figure 5: Schemas re-comparing after synchronization

Now it is time for convenient data synchronization with Data Comparison Wizard (Figure 6). It

offers three groups of various settings to help you tune the following:

• Automatic mapping of objects – you can select whether to take into account case, spaces

or ignore some properties.

• Comparing objects – you can define what objects to be compared and what should be

ignored.

• Displaying comparison results – these options definitely simplify your work while analyzing

the differences and show only that information you need.

© 2010 Devart 12

Figure 6: Data Comparison Wizard

As we do not want to see identical records in our case, let us just exclude them from displaying.

Besides automatic mapping of objects, the wizard lets you do some manual mapping. It is very

essential for cases when automatic mapping does not suit your needs, for example, you want to

map schemas with different names. The Mapping wizard page (Figure 7) gives you freedom to set

comparison keys by selecting existing or custom ones; select columns for comparison, apply SQL

filter for each object, exclude unnecessary objects from comparison, and map those objects that

were not automatically mapped.

© 2010 Devart 13

Figure 7: Mapping in Data Comparison Wizard

When the comparison is set up, we press the Compare button and get the data comparison results

in the convenient grid (Figure 8).

© 2010 Devart 14

Figure 8: Data comparison results

The results include:

• New data (Only in Source) that exists only in the local copy of the database.

• Data existing in the remote database (Only In Target). It can be new data or some data

deleted in the local database. To preserve the new data on the remote server, we can

exclude it from the synchronization.

• Modified data in customers and navigation tables. As it is shown, the changes in record

with id 3 record contradict each other. The record in the remote database contains real

data of a new customer, meanwhile in the local database the record has some working data

used for testing new functionality. To keep the real data, we exclude the record with test

data from synchronization, but all the rest records will be synchronized as a new address

column has been added.

When the comparison results are ready for synchronization, we open Data Synchronization Wizard

(Figure 9) by selecting the Synchronize button on the toolbar.

© 2010 Devart 15

Figure 9: Data Synchronization Wizard

With the wizard, you have a choice of what to do with the synchronization script (whether to see it

now, save for further review or execute immediately), apply synchronization options, e.g., to turn

off foreign keys, and see the execution plan along with the list of warnings and notifications if any

are generated. You have the complete control and insight what the result you will get.

To synchronize the data, it takes only to press Synchronize in the wizard and check the re-

compared data (Figure 10) to ensure we have the desired result. We have all the selected records

successfully synchronized. The records selected to preserve in the remote database are preserved.

The result is the same as expected, with little effort, time and errors.

© 2010 Devart 16

Figure 10: Data re-comparing after synchronization

Imagine the benefits you may get while dealing with more complex database structures, larger

data and specific requirements of your database migrating cases.

© 2010 Devart 17

Conclusion

In the fast-developing world of databases, database migrating is a business necessity. As

databases grow in size and gain more complex structures, migrating failures become costly and

put the companies’ prosperity at a big risk. Without reliable and speedy tools, it is hard to meet

new business challenges, be efficient and safe. The modern market offers enough tools, varying in

functionality, efficiency and price.

As each company faces the choice, the rational way to find the perfect tool is to define what

database migration tasks the tool should complete, what kind of databases and data will be

involved, and what critical functionality the company wants to see. This will narrow the selection

and indicate the very tool that will suit the specific needs.

© 2010 Devart 18

Additional Resources

Articles on forward engineering with MySQL Workbench:

http://dev.mysql.com/doc/workbench/en/wb-forward-engineering.html

Schema and Data Compare Tools by Devart

http://www.devart.com/dbforge/mysql/schemacompare/

http://www.devart.com/dbforge/mysql/datacompare/

Automated MySQL Data Comparison and Synchronization: How It Works:

http://www.devart.com/blogs/dbforge/?p=541

Data Comparison Methods Overview

http://www.devart.com/blogs/dbforge/?p=1056

Guide to Schema Synchronization with MySQL Workbench:

http://wb.mysql.com/?p=116

© 2010 Devart 19

http://www.devart.com/dbforge/mysql/datacompare/
http://www.devart.com/dbforge/mysql/schemacompare/
http://wb.mysql.com/?p=116
http://www.devart.com/blogs/dbforge/?p=1056
http://www.devart.com/blogs/dbforge/?p=541
http://dev.mysql.com/doc/workbench/en/wb-forward-engineering.html

About Devart

Devart (formerly known as Core Lab) is a

software development company founded in 1998.

It is a provider of native connectivity solutions,

development and administration tools for Oracle,

SQL Server, MySQL, PostgreSQL, InterBase,

Firebird, and SQLite databases. It is a partner of such software providers as Microsoft and

CodeGear and participates in MySQL Network Program. Devart is dedicated to delivering the

fastest available data access and the broadest database support to industry professionals.

Company Web Site: www.devart.com

© 2010 Devart 20

http://www.devart.com/

