

Oracle Service Agreements Conversion

Author: Ritu Malhotra, Gautam P
October 2006

Table of Contents

1. Executive Summary...3
2. Overview of Contracts ...5
2.1. Types of Contracts ...5
2.2. Structure...5
3. Key Decisions ..7
4. Methodology ..10
4.1. Design..10
4.2. Design Tips ..10
4.3. Pre Conversion Requirement ...11
4.4. Process Flow..12
4.5. Verification of Migrated contracts ...13
5. Oracle API’s...15
5.1. Contract Header Creation ..15
5.2. Line Creation..15
5.3. Sub Line Creation ..15
5.4. Billing Schedule Creation and Update..15
5.5. Contract Security Access ...16
5.6. Price reflection at Service Line...16
5.7. Security Description and Text ..16
5.8. Sales Credit..16
5.9. Standard APIs in SC Module..16
5.10. Core Tables ..17
6. Key Challenges..18
6.1. Performance...18
6.2. Tips for Improving Performance ...18
6.3. Tax Structure Setup ...18
6.4. Billing Schedules Creation and Update..19

Appendix 1 - Contract Structure and Mapping to Tables20
Appendix 2 – Screen Shots ..21
Appendix 3 - Strategy for Rollback and Commit ...23
Appendix 4 - Price reflection at Line ...24
Appendix 5 - Security Description & Text..25
Appendix 6 – Inventory of Oracle Standard API’s ...26
Appendix 7 – Inventory of Affected Base Tables ..27
Appendix 8 – Inventory of Mandatory Columns ..28
Appendix 9 - Inventory of Mandatory Validations..29

1. Executive Summary

In today’s business world change is inevitable. Whether due to changes in the
business or in business applications, systems are continuously being upgraded.
Oracle Enterprise Application solutions are the most widely used applications to
manage various business needs. The Oracle Service Contracts (“Oracle SC” or
“OSC”) module provides a complete contract authoring execution solution to
manage warranties, extended warranties, usage, subscription services, as well
as complex service agreements. With OSC one can:
o Sell multiple types of services
o Define pricing and billing schedules
o Ensure timely service entitlement checks
o Automate renewals for recurring revenue opportunities
o Simplify change management
o Minimize service revenue leakage.

This document outlines conversions in OSC, which are required when:
o A customer migrates from a lower version of Oracle E-business suite to a

higher version, and remodels the business systems.
o Customers migrate data from legacy systems to Oracle Service Contracts

when Oracle E-business suite is implemented. Legacy systems may not
provide as much functionality/flexibility and this provide many
opportunities to restructure the contracts for better manageability and
efficiency.

This document provides complete information for importing Oracle Service
Contracts and is especially useful because:
o This is one of the first guides available. Standard interfaces/APIS or

adequate documentation and support for importing SC data does not
currently exist. Implementers have till now relied on private API’s (which
are not supported by Oracle) or Service Contract Import concurrent
program, which has the disadvantages of not only not being a complete
solution, but is also lacking support in Oracle versions 11.5.9 or 11.5.10.

o The information here can be used as inputs to solving the challenges in
mapping the legacy data with the Oracle SC schema. SC is a powerful
application with rich functionality and many choices of setting up the
applications and importing the data. Its important that the right decisions
are made how to map the convert so that it meets the business needs
and also allow enterprise to take advantage of the numerous features to
automate the business further

o This document also provides information on dealing with large volumes of
data, and verifying imported data to make sure that it’s been converted
properly.

This will be helpful for BA and implementers who are designing the strategy for
conversion and also technical analysts who will actually develop the conversion
scripts.

2. Overview of Contracts
2.1. Types of Contracts

A Contract is an agreement to bill a customer for recurring services or extended
warranty. This is very common in Service industries.

Briefly, the contracts cycle consists of the following steps. When goods are
purchased by a customer, there could be associated services bundled with the
goods purchased. The purchased item is tracked in IB and the agreement to
provide the service for a fee is tracked in a contract. Contract would track the
party with which the agreement is signed and agreed upon terms, conditions,
prices, discounts, billing schedule payment terms, renewal options, and
fulfillment. Based on the billing schedules customer invoices would be sent out.

Oracle Service Contracts enables users to design, manage, and bill for service
offerings tailored to their customers’ needs. A contract provides complete
solution to manage warranties, subscription and usages. It makes it possible to
manage the entire contract life cycle, including contract creation, renewal, and
termination. All contracts are held centrally. There are three types of contract:

o Subscription Contract: This is used for tracking tangible and intangible

subscription products.
o Warranty and Extended Warranty: It is used when tracking of warranty of

device is needed. It needs to be used if tracking of products in customers
install base has to be done. It doesn’t allow having usage lines and
service lines with other level of coverage’s.

o Service Agreement: It is used for tracking service entitlements to covered
product and Support plans. It needs to be used for contracts which will
cover usages and cover items other than customers install base.

2.2. Structure

In Oracle, Service contracts is represented by a Header that contains information
about the duration, total value, the parties involved, at what level , price list,
renewal terms.

Each contract will have Lines that would represent service, usage or subscription
item etc that is covered. Types of Lines are:
o Usage: charges customer based on usage. For e.g.: photo copier machine

usage
o Subscription: This covers subscriptions made by customer. For e.g.:

yearly subscription of magazine or collateral material send through email.
o Service: this type of line covers broad category of items that can include

activities like installation of items, repair.

Each line would have Sub lines that would specify exactly what service covers or
the counters when it is usage line. The types of Sub Lines are:
o Usage: This type of sub lines specifies the counter which is used for

usage tracking.
o Subscription: It doesn’t allow having any sub lines
o Service: This type of line covers: Party, Customer, Site, System, Product

and Item.

3. Key Decisions

There are certain businesses decisions need to be taken before designing the
conversion process. A few of them are discussed below:

3.1. Contract number can be automatically generated or can be brought in

from legacy system. It would be better if contract number is migrated ASIS
from legacy system, as there are usually legal issues involved. For
example, invoices sent to customers use particular contract numbers, and
if automatic generation of contract number is used then invoices would
change after migration.

3.2. Contracts which are not in Active and Signed status need not to be

migrated if volume of data is huge. But for legal issues, terminated and
expired contracts might need to be migrated.

3.3. This is the stage where data can be cleaned as much as possible. If

inactive contacts information is present in ACTIVE contract, we don’t need
to migrate this instead migrate the correct and active contact information.
On similar lines, inactive sales person information can be dropped.

3.4. Older version of contracts and notes information which is no more relevant

can be dropped off.

3.5. If active contract is having terminated lines or expired lines even these can

be dropped off after considering the legal formalities.

3.6. Any contract attachments which no longer holds good can also be

dropped off. If Legacy system is not being dismantled then this can be
used for reference.

3.7. Pricing policies - Whether items price would be overridden to the price in

the price list. If items price needs to be overridden in contract while
migrating them then couple of profile option should be set as given below.
o OKS: Use Advanced Pricing for Manual Adjustment: should be set

to No.
o OKC: Allow Manual Price Adjustment: should be left as blank.
o OKC: Enable Advanced Pricing: Should be set to yes

3.8. If billing history of previous invoices sent to customer needs to be brought

into new system, then it would be needed to migrate contract starting as
same day contract starts in legacy system. If it’s not needed then migrate
the contract starting as date on which migration is done and store the
actual start date in DFF. Again here legal decisions need to be
considered.

3.9. Some times contracts are created for 15-20 years even though they would

be initially valid for 3-4 years. Instead of migrating contracts for duration of
15-20 years, reduce duration and migrate them and latter use standard
Oracle contracts renewal programs.

3.10. Future contract renewal policy needs to be decided. Depending on this

decision, renewal rules for contract need to be decided and migrated. For
e.g.: By setting the renewal type of a contract to “Active Contract”, the
contract is renewed in a status of Active status without any approvals.
Independent condition, process definition needs to be created. Concurrent
program Date Assembler needs to be scheduled. This concurrent program
keep checking how many contracts are due for renew based on the
conditions created and it renews the contract based on the process
created.

3.11. Need to decide on invoicing rule, accounting rule and payment terms

depending on when amount needs to be interfaced to AR and when
revenue should be recognized. For e.g.: If the customer needs to be billed
at the start of each month, choose Advance Invoice as the Invoicing Rule
for the contract.

3.12. The type of billing type to be used needs to be examined.

o Top Level: Default schedule at the line level - If top level is used,
then total amount and amount for all individual months get
calculated out of box. But when we use this top level, then its
probable that the amount for every month would not the same as
monthly unit price. For e.g. If for every month $100 needs to be
charged, then Top level might not help and Equal Amount billing
should be used.

o Equal Amount: To bill for equal amounts across sub lines over the
billing period and have control over the amount.

3.13. The structure of billing schedules needs to be decided based on how

customer would be billed. A billing schedule determines when the
customer is billed for the services they receive. For e.g.: Billing schedules
with irregular period needs to be handled or not. Billing schedules with
irregular period would be required for a customer who starts a contract in
the middle of a month, but wished to be billed at the beginning of each
month. If customer is ok with billing from middle of the month to middle of
the next month, then it would be regular period handling.

3.14. Contracts can be merged, instead of migrating them as multiple contracts

with few lines, when:
o Contracts have same bill to address for a customer.
o Start dates and end dates of a contract are same for same bill to.

Some of the key benefits of merging are:
o Performance improvement can be achieved
o Easy maintainability and renewals.
o Data in one place/contract.

3.15. The level of coverage to use depends on the type of service customer are

selling and on the different needs of enterprise. Type of line and sub lines
gets decided based on this. For e.g. If customer covers a broad category
of items that can include activities such as field service, depot repair, call
center, technical support, or any other user-defined business activities
then type of line would be “Service”. The following table provides
suggested guidelines. It lists some of the main business uses and lists the
recommended covered levels for each.

Business Use Recommended
Levels

Examples

Servicing a customer
product

• Product

• A washing machine
manufacturer sells extended
warranties for the products it has
sold.
• Any serialized product
• A fire safety equipment
vendor sells service for
emergency generators installed
in a building.

Servicing high volume
and low cost items

• Party
• Customer
• Site
• System

The fire safety equipment
vendor services fire sprinklers
by customer site because they
are too numerous to track in a
contract individually.

Providing services not
tied to any specific
product such as
telephone support or
safety inspections.

• Party
• Customer
• Site

Sometimes a service covers
a business process rather
than any specific product a
customer owns.
For example:
• A computer manufacturer
provides telephone
support to troubleshoot
all of its products.
• A vendor of fire protection
equipment offers periodic
safety inspections at a
particular site or building.

Providing support for
products the customer
plans to purchase
in the future.

• Item

Use the Item level to cover
products not yet in the installed
base.
For example, a customer
plans to purchase additional
generators in the near future
so they wish to include them
in the same service agreement
in order to receive a discount.

4. Methodology
4.1. Design
This section details the methodology for converting the Service agreements,
which are associated or not associated to the Installed Products. The steps are
as follows:
4.1.1. Extract legacy data/Oracle old version into ASCII flat file.

4.1.2. Create Staging tables to hold legacy data. Additional columns can be

created to hold ids for the same columns. Stamping id’s for the columns
during the validate process will give improvement in performance.

4.1.3. Create a validation process which will ensure validity and integrity of

inbound data. This process can include a set of programs that will validate
and additionally stamp the column id’s that are derived for validation. This
id’s will be used by Oracle Service Contracts APIs. The errors
encountered during the validation phase can be captured in the same
staging table itself or separate custom error processing table.

4.1.4. Once the validation process is completed, the same program will pass the

validated data/id to the appropriate Service Contracts APIs, which then
create service agreements in Service Contracts module. The errors
encountered during the process can also be recorded into the staging
table itself or Custom Error processing tables.

4.1.5. Validation and Processing errors should be corrected and processed in

the subsequent runs.

4.2. Design Tips

4.2.1. Any additional information can be captured in Notes.

4.2.2. Additional information at line, sub line level can be captured by defining

context sensitive DFF.

4.2.3. Security level additional information can be stored at security text and

description.

4.2.4. Transaction type selected for a contract would appear as source in AR

transactions.

4.2.5. Billing schedules can be created by using Billing profile options or by using

billing streams. Use first method for setting up simple periodic billing
schedules, for example, when a customer orders a year of service and

wishes to be billed monthly or quarterly. Using second method would allow
creating complex billing schedules or billing schedules with irregular
periods, for example, when a customer orders additional service in the
middle of a billing period or requires service only intermittently. And
moreover, a billing stream is designed to speed up the creation of a set of
regular billing periods.

4.2.6. OKS: Billing Schedule Level profile option must be set to Billing type which

would be used. It can be either ‘Top Line’ or ‘Equal Amount’.

4.2.7. Sales Credits either at header level or line level is mandatory. If Data

extract doesn’t provide then default it to sales person of the Vendor.

4.2.8. Customized QA check Processes can be created if some extra validation

needs to be done. Default QA checklist name is ‘DEFAULT QA CHECK
LIST’.

4.2.9. Default workflow Process name is ‘K_APPROVAL_PROCESS’ and

workflow Name is ‘OKCAUKAP’. If different approval processes is needed
then customized version can be created and be used.

4.2.10. If huge volume of data needs to be migrated then performance

criteria should be always kept in mind. Fine tuning queries& code is a
must as most of the Oracle Contracts API’s are not meant for handling
bulk data as it hampers migration performance. Please refer section 1.6
for more information on performance tips.

4.3. Pre Conversion Requirement
The following setup is required in Oracle Applications before running
conversions:
4.3.1. All the legacy/Oracle Older version Service Line and sub line items should

be defined in inventory.

4.3.2. Legacy/Oracle Older version items and install base records should have

been imported in install base. Items are “Service Contract Enabled”.

4.3.3. All the legacy /Oracle Older version ‘Systems’ should be defined in Oracle

installed Base.

4.3.4. Legacy/Oracle Older version Customer, Accounts, Sites and Contacts

should have been already imported in Oracle Receivable

4.3.5. Sales Representatives information needs to be migrated or set up in the

system.

4.3.6. The following setups should be completed in the Oracle Service Contracts
module
o Time Unit of Measure
o Coverage Templates

4.4. Process Flow

4.4.1. Schematic

4.4.2. Process Flow Details

After all system validations are done successfully, we would be inserting data
into Oracle service contracts base tables in below sequence:

1. Pick contract header record from staging table and create header record.

While header record is created, we can also take care of below
requirements:
a) Create sales credit at contract header level
b) Add contacts to vendor and customer both party levels.
c) Add contract created to different security groups and resources.

2. If header record is created successfully then pick first line and create it.
While line record is created, we can also take care of below requirements:
a) Line level bill to account and ship to account can be overridden. We

can use other values of bill to and ship to account apart from the
values which are entered at header level.

b) Sales credits at service line level can be created.

3. Pick up first sub line which needs to be created under above service line
created and create a sub line. While creating sub line, we can associate IB
instances also. It depends on the type of sub line. Sub lines specify what
service covers or counters where usage is tracked. If line is of type
Service then type of sub lines which can be created are:
a) Party
b) Customer
c) Site
d) System: This type of sub line covers the complete system.
e) Product: This type of sub line needs an association with IB.
f) Item

 Process all the sub lines for line created above.

4. Create or update billing schedule for the line created successfully in step
2.

4.5. Verification of Migrated contracts

Once contracts are successfully migrated, they need to be validated and verified.
It can be done by:

1. View and verify contracts information manually.

2. Run QA process on the contract.

3. Run Service contracts main billing program and Master auto invoice

import program on few of the contracts for a customer. Verify created AR

transactions manually for Revenue recognized, monthly amount for the
customer and GL dates.

4. Verify by generating an invoice for a customer after running Print Draft

consolidate program. Check billed amount for the customer is correct or
not.

5. Manually renew few contracts and verify whether renewal data in a

contract is valid.

6. Terminate couple of sub lines or lines and verify the data.

7. Run standard and custom reports on contracts and verify the results with

legacy system reports output data.

5. Oracle API’s

This section talks about main and important Oracle APIs which would be called
for migration.

5.1. Contract Header Creation

For creating contract header API is:
OKS_CONTRACTS_PUB.CREATE_CONTRACT_HEADER

5.2. Line Creation

For creating line of type Service API is:
OKS_CONTRACTS_PUB.CREATE_SERVICE_LINE

5.3. Sub Line Creation

If Item is IB track able then we can create covered product sub line with IB link
established. API is:
OKS_CONTRACTS_PUB.CREATE_COVERED_LINE

If item is non IB track able then we can create sub line of Item type. For creating
covered customer sub line, there is no single API which can be invoked. We
need to invoke group of APIs as listed below:

OKC_CONTRACT_PUB.CREATE_CONTRACT_LINE
OKS_TAX_UTIL_PVT.GET_TAX
OKS_CONTRACT_LINE_PUB.CREATE_LINE
OKC_CONTRACT_ITEM_PUB.CREATE_CONTRACT_ITEM

5.4. Billing Schedule Creation and Update

This is the area where there is least documentation available and it is the most
important part of a Service contract. Once all sub lines are created for a
particular line, we need to create billing schedules. API is:
OKS_CONTRACTS_PUB.CREATE_BILL_SCHEDULE. This API creates billing schedules
for both sub line and service line. It creates billing streams and individual billing
lines.

For updating billing schedules, there is no API. We can use below API:
OKS_BILL_SCH.CREATE_BILL_SCH_RULES.

This API also creates billing schedules for both sub line and service line. It
creates billing streams and individual billing lines both. But this API deletes all the
billing streams and individual billing first if already present and then creates new
ones. Please note that there is no separate public API to create billing schedules

just for sub line. This API creates/updates billing schedules for both lines: at sub
line and service line.

5.5. Contract Security Access

To add contract created to different security groups and resources API is:
OKC_CONTRACT_PUB.CREATE_CONTRACT_ACCESS.

5.6. Price reflection at Service Line

The API which creates sub lines doesn’t update amount at line automatically. It
needs to be done explicitly by calling API: Oks_Qp_Int_Pvt.COMPUTE_PRICE.
This API computes the price and updates the price at service line. Depending on
the input parameter Intent, this API decides how price is computed at service
line. For Intent values refer Appendix.

5.7. Security Description and Text

To add security description and text under Contracts header Security /Text tab as
shown in below screen shot, there is no API. We will have to call direct update
statement to update these fields when contract header is created. Refer
appendix for update statement.

5.8. Sales Credit

For creating sales credit separately, we will have to use API:
OKS_SALES_CREDIT_PUB.INSERT_SALES_CREDIT.
This API can be used to create Sales credits at header level for already created
Contract. And even sales credits at line level can be created when line is already
created. If only contract header id is passed and line id input is not passed as
input parameter to the API then sales credits is created at Contract header level.
If both contract header id and line id input is passed as input parameters to the
API then sales credits is created at Contract line level.

5.9. Standard APIs in SC Module
 OKC_CONTRACT_PUB (headers, lines, sub-lines) – This is used for creating Headers etc.

Please refer section 1.8.6 for further details.
 OKC_RULE_PUB (rule groups, rules)
 OKC_CONTRACT_ITEM_PUB (items)
 OKC_CONTRACT_PARTY_PUB (customers, contacts)
 OKC_CONTRACT_GROUP_PUB (groupings)
 OKS_SALES_CREDIT_PUB (sales credits)
 OKS_CONTRACTS_PUB (billing schedule)

5.10. Core Tables
 Please refer section 1.8.7 for association with above APIs.

 OKC.OKC_K_HEADERS_B
 OKC_K_HEADERS_TL
 OKC.OKC_K_LINES_B
 OKC.OKC_K_LINES_TL
 OKC.OKC_RULE_GROUPS_B
 OKC.OKC_K_RULES_B
 OKC.OKC_K_ITEMS
 OKC.OKC_K_GRPINGS
 OKC.OKC_K_PARTY_ROLES_B
 OKC.OKC_K_HISTORY_B
 OKC.OKC_K_PROCESSES
 OKS.OKS_K_SALES_CREDITS
 OKS.OKS_LEVEL_ELEMENTS

6. Key Challenges
6.1. Performance

This is the biggest challenge for contracts conversion. There is no bulk API’s to
be used. So, one need to be very careful while deciding the methodology of
conversion.

6.2. Tips for Improving Performance

6.2.1. Billing schedule creation

While converting a contract, if performance is bad, then most of the times it is
due to the time consumed while creating Individual billing schedules. Conversion
performance improves if we create the billing schedule once for one service line
i.e. first create service line and all its sub lines, and in the end create billing
schedules for the service line and all its sub lines in one go by calling API:
OKS_CONTRACTS_PUB.CREATE_BILL_SCHEDULE.

If needed billing stream amounts can be stamped in staging table as and when
sub line is created. This approach improves performance drastically if contract is
for long duration and with lot of IB associations. We can even create billing
schedule once when first sub line is created and then create all sub lines and in
the end call update billing schedule API. This approach avoids calculating of all
id’s and parameters which are needed for creating billing schedules. It’s like you
have parameters, so create billing schedules once. And in the end when all sub
lines are created for a particular service line then update billing schedules.
Update API doesn’t need as many input parameters as Create billing schedule
needs.

6.2.2. Strategy of commit and rollback selected also controls performance.

6.2.3. Deciding on what data can be dropped off can even give performance

improvement such as dropping of attachments.

6.2.4. Stamping ID’s during validation phase.

6.2.5. Billing history is being brought forward in new system or not. Reducing the

contract duration by not bringing in schedules for past duration would help
in drastic performance improvement.

6.3. Tax Structure Setup

Tax set up needs to be done before contracts conversion is started. Lots of API’s
will through errors due to incorrect set up of tax structure. And some times error
message would be quite different when compared to the actual error.

6.4. Billing Schedules Creation and Update

This is the area where there is least documentation available and it is the most
important part of a Service contract. Once all sub lines are created for a
particular line, we need to create billing schedules through the API:
OKS_CONTRACTS_PUB.CREATE_BILL_SCHEDULE.
This API creates billing schedules for both sub line and service line. It creates
billing streams and individual billing lines.

For updating billing schedules, we can use:
OKS_BILL_SCH.CREATE_BILL_SCH_RULES.
This API also creates billing schedules for both sub line and service line

The only difference between the two API’s is that the second API always deletes
already existing billing schedules if present and then creates fresh ones. When
schedule is already created and if you call
OKS_BILL_SCH.CREATE_BILL_SCH_RULES for updating then what would
happen is it would create additional billing streams and one would get to see two
billing streams instead of a single one.

Appendix 1 - Contract Structure and Mapping to Tables

The diagram below shows the contract table names and how they are linked to
each other.

Some important column names are:

• ID: Primary Key in a table
• CLE_ID: Parent Line ID
• DNZ_CHR_ID: De-normalized Contract ID
• JTOT_OBJECT1_CODE: Object Code from JTF_OBJECTS_VL table.

Contains the SELECT statement which retrieves the data
• OBJECT1_ID1, OBJECT1_ID2: Keys to access the object in

JTF_OBJECTS_VL

Headers
OKC_K_HEADERS_B

Lines
OKC_K_LINES_B

Line Items
OKC_K_ITEMS

Rule Groups
OKC_RULE_GROUPS_B

Rules
OKC_RULES_B

ID CHR_ID

ID

CLE_ID

ID
CLE_ID

ID

CHR_ID

ID

CLE_I

ID

RGP_ID

Party Roles
OKC_K_PARTY_ROLES

Contacts
OKC_CONTACTS

ID
CHR_ID

CPL_ID

I

Appendix 2 – Screen Shots

Below screen shots will give an idea which all tables are linked for which data:

1. Contract Header Screen shot and its related tables:

• OKC_K_PARTY_ROLES_B
• If JTOT_OBJECT1_CODE = ‘OKX_PARTY’ join to HZ_PARTIES
• If JTOT_OBJECT1_CODE = ‘OKX_OPERUNIT’ join to

HR_ORGANIZATIONS

• Header Rules stored in OKC_RULES_B

• OKC_RULES_B -> RULE_INFORMATION_CATEGORY defines what
kind of rule it is (eg. STO = Ship To, BTO = Bill To, REN = Renewal)

• All rules defined in “OKC Rule Developer DF” Descriptive Flex field
definition

• OKC_RULES_B

• JTOT_OBJECT1_CODE, OBJECT1_ID1, OBJECT1_ID2 store
information on the rules that are stored in other tables (eg. Price
List)

OKC_K_HEADERS_V

OKC_K_PARTY_ROLES

OKC_CONTACTS

OKC_RULES_B

• RULE_INFORMATION1 to RULE_INFORMATION15 store specific
details about a rule that is not available in other tables (eg.
Estimated Percent)

2. Contract Lines and Sub Lines Screen shot and its related tables:

OKC_K_LINES_V
OKC_K_ITEMS

OKC_K_LINES_V
OKC_K_ITEMS

Appendix 3 - Strategy for Rollback and Commit

We can have different approaches for commit and rollback. Strategy selected
controls performance also to some extend. Best recommended way would be to
commit only if the complete contract is created successfully. Header, all its lines
and all its sub lines are created successfully then commit for a particular contract.
If any one of them fails it would be best to rollback. This helps in achieving
maximum integrity of data created or migrated.

Appendix 4 - Price reflection at Line

The API which creates sub lines doesn’t update amount at line automatically. It
needs to be done explicitly by calling API: Oks_Qp_Int_Pvt.COMPUTE_PRICE.
Depending on the input parameter Intent, this API decides how price is computed
at service line.
Intent can take below values:
a. HP: Header Pricing. When intent is HP, it calculates the price for complete

contract at header level.
b. LP: Top Line Pricing. This computes price at line level. Service line id

would need to be passed as input parameter.
c. SP: Sub Line Pricing. This computes price at sub line level. Sub line id

would need to be passed as input parameter.
d. OA: Override Pricing. This would be used, when we are overriding price of

price provided in price list. It’s like sub line Sub total is overridden and
price needs to be computed at its line level, then this intent would need to
be passed.

e. SB_P: Subscription Pricing
f. SB_O: Subscription Override Pricing.

Appendix 5 - Security Description & Text

There is no API to populate Security Description and text. Direct update
statement would be required, such as:

UPDATE okc_k_headers_tl
SET description = Security Description from data extract,
Comments = Security Text from data extract
Where ID = ID of contract created.

Appendix 6 – Inventory of Oracle Standard API’s

No. Oracle Standard API Description Comments

1 OKS_CONTRACTS_PUB.CREATE_
CONTRACT_HEADER

 To Create Contract
Header

2 OKC_CONTRACT_PUB.CREATE_C
ONTRACT_ACCESS

 To Provide Read or
Modify Access to
Contract

3 OKS_CONTRACTS_PUB.CREATE_
SERVICE_LINE

 To Create Service
Line

4 OKS_CONTRACTS_PUB.CREATE_
COVERED_LINE

 To Create Covered
Product Sub line

5 OKC_CONTRACT_PUB.CREATE_C
ONTRACT_LINE,

OKS_TAX_UTIL_PVT.GET_TAX,

OKS_CONTRACT_LINE_PUB.CREA
TE_LINE,

OKC_CONTRACT_ITEM_PUB.CRE
ATE_CONTRACT_ITEM

 To Create Covered
Customer

6 OKS_CONTRACTS_PUB.CREATE_
BILL_SCHEDULE

 To Create Billing
Schedule

Appendix 7 – Inventory of Affected Base Tables

Schema Base Table Description Comments

OKC OKC_K_HEADERS_
B

OKS_CONTRACTS_PUB.CREATE_
CONTRACT_HEADER

To Create Contract Header

OKC OKC_K_ACCESSES OKC_CONTRACT_PUB.CREATE_C
ONTRACT_ACCESS

Insert Access Privileges to the
Table

OKC OKC_K_LINES_B OKS_CONTRACTS_PUB.CREATE_
SERVICE_LINE

Creates Service Line

OKC OKC_K_LINES_B OKS_CONTRACTS_PUB.CREATE_
COVERED_LINE

Creates Covered Lines
Distinguished by lse_id

OKC OKC_K_LINES_TL OKC_CONTRACT_PUB.CREATE_C
ONTRACT_LINE

OKC OKS_STREAM_LEV
ELS_B ,
OKS_LEVEL_ELEME
NTS

OKS_CONTRACTS_PUB.CREATE_
BILL_SCHEDULE

Create Billing Schedule

Appendix 8 – Inventory of Mandatory Columns

Interface table / API name Column Name Comments

OKS_CONTRACTS_PUB.CREAT
E_CONTRACT_HEADER

customer_id , Bill and
Ship To Location ID ,
Pricelist ID ,Contract
Number and Contract
Name

Depending on the profile set up ,
Contract number may be passed or
obtained automatically

OKC_CONTRACT_PUB.CREA
TE_CONTRACT_ACCESS

Contract ID To Provide Read or Modify
Access to Contract

OKS_CONTRACTS_PUB.CRE
ATE_SERVICE_LINE

Contract Id ,
Line Type , Currency
,UOM Code

To Create Service Line

OKS_CONTRACTS_PUB.CREAT
E_COVERED_LINE

Contract_id ,
service_line_id ,
ib_instance_id ,quantity
, UOM Code , Currency
Code

Creates Covered Line
LSE Id = 9

OKC_CONTRACT_PUB.CREA
TE_CONTRACT_LINE

Negotiated Amount ,
Line Number ,
Service Line ID

To Create Covered Customer with
LSE id 35

OKS_CONTRACTS_PUB.CRE
ATE_BILL_SCHEDULE

dnz_chr_id ,
cle_id,
level_periods,
uom_per_period

Appendix 9 - Inventory of Mandatory Validations

No. Validation Column Name Comments

1 Check the UOMs
Check
OKX_UNITS_OF_MEASURE_V for
UOM (Day ,Month , Each)

2 Verify Contract Header Status OKC_STATUSES_TL
 WHERE UPPER(MEANING)
 =
UPPER(l_contract_header_status)

3 Verify the Contract Group FROM OKC_K_GROUPS_V
 WHERE UPPER(NAME) =
UPPER(l_contract_group);

4 Verify the Currency Code SELECT 1
FROM FND_CURRENCIES
WHERE
UPPER(CURRENCY_CODE) =
UPPER(l_currency_code);

5 Verify the Workflow Process FROM OKC_PROCESS_DEFS_B
 WHERE
 UPPER(WF_PROCESS_NA
ME) = UPPER(l_workflow_process);

6 Verify the Price List FROM QP_LIST_HEADERS_tl a,
QP_LIST_HEADERS_b b
 WHERE UPPER(a.NAME) =
UPPER(trim(l_pricelist_name))

7 Verify the Accounting Rules FROM RA_RULES
 WHERE UPPER(NAME) =
UPPER(l_accounting_rule)

8 Verify the Invoicing Rules FROM RA_RULES
 WHERE UPPER(NAME) =
UPPER(l_invoicing_rule)

9 Verify the Payment Terms FROM RA_TERMS
 WHERE NAME =
l_payment_terms;

10 Verify the Customer FROM HZ_PARTIES
WHERE UPPER(PARTY_NAME) =
UPPER(l_customer_name)

11 Verify the Renewal Type FROM FND_LOOKUPS
WHERE LOOKUP_TYPE =
'OKC_RENEWAL_TYPE'
AND MEANING= _renewal_type;

12 Verify Line Renewal Type FROM FND_LOOKUPS
WHERE LOOKUP_TYPE =
'OKC_LINE_RENEWAL_TYPE'
AND MEANING= l_renewal_type;

13 Verify Contract Line Status FROM OKC_STATUSES_TL
WHEREUPPER(MEANING) =
UPPER(l_contract_line_status)

No. Validation Column Name Comments

14 Check Sales Person
 FROM okx_salesreps_v
WHERE NAME IN(l_sales_rep)

15 Check Resources ROM OKX_RESOURCES_V
WHERE NAME = l_contact_name

16 Check Party Contact FROM OKX_PARTY_CONTACTS_V
WHERE NAME = l_contact_name

17 Check Items FROM OKX_SYSTEM_ITEMS_V
WHERE DESCRIPTION IN

18 Check Contract Already Exist FROM okc_k_headers_b
WHERE contract_number =
l_contract_number;

19 Check Resource FROM OKC_RESOURCE_USERS_V
WHERE NAME = l_res_name

20 Check Resource Group WHERE NAME = l_group_name
AND RESOURCE_TYPE =
'RS_GROUP'

21 Check Contact Roles FROM FND_LOOKUP_VALUES
WHERE LOOKUP_TYPE =
'OKC_CONTACT_ROLE'
AND UPPER(MEANING) =
UPPER(l_role_name)

22 Contract Start Date and End Date (Both at
Header and Line Level) Cant be Null and
End Date Should be Greater than Start Date
and Date should be in Proper Format

About the Author

Ritu Malhotra, a Lead Consultant at Trianz, has more then six years of
experience in implementing various Oracle applications. Her expertise is in Oracle
Service Contracts, Teleservices, OM and Receivables. She has successfully led
implementation of several Oracle products at companies such as Oracle, VeriSign, Good
Technologies and Equinix. She can be contacted at ritu.malhotra@trianz.com

About Trianz

Trianz is a global consulting and professional services firm that helps leaders
successfully execute on business and technology initiatives to achieve results as
measured from a top management perspective. We provide a wide range of
management consulting, technology and engineering and operations outsourcing
services for a diversified global client base.

Trianz clients are results-focused executives and leaders in a range of organizations
from Fortune 1000 corporations to emerging, rapid-growth companies. Trianz seeks to
be the execution partner of choice for our clients and a leading participant in their global
strategic initiatives. Our service offerings focus on the following areas:

• Operations Consulting
• Enterprise Applications Services
• Software Product Engineering
• Transformational Outsourcing

Disclaimer for white papers

©2006 Trianz. All rights reserved

Copyright in whole and in part of this document belongs to Trianz, Inc. This work has
been provided for informational purposes only, and may be copied for personal use only.
This work may not be used, sold, transferred, adapted, abridged, copied, or reproduced in
whole or in part, in any media, by enterprises, without the prior written permission of
Trianz, AND an acknowledgement of "Trianz" as the source of the content. All trademarks
and copyrights mentioned in this white paper are the property of their respective owners.
Neither the author nor Trianz bears any responsibility for damage resulting from the use of
the information contained herein.

For more information about Trianz and its capabilities, visit 'www.trianz.com'

